Technical Information # Proline Promag 50W, 53W Electromagnetic Flow Measuring System Flow measurement of liquids in water or wastewater applications #### Application Electromagnetic flowmeter for bidirectional measurement of liquids with a minimum conductivity of $\geq 5~\mu S/cm$: - Drinking water - Wastewater - Sewage sludge - Flow measurement up to 110000 m³/h (484315 gal/min) - Fluid temperature up to +80 °C (+176 °F) - Process pressures up to 40 bar (580 psi) - Lengths in accordance with DVGW/ISO Application-specific lining of the measuring pipe from polyurethane or hard rubber with the following drinking water permissions: - KTŴ - WRAS - NSF - ACS Approvals for hazardous area: - ATEX - IECEx - FM - CSA - NEPSI Connection to process control system: - HART - PROFIBUS DP/PA - FOUNDATION Fieldbus - MODBUS RS485 #### Your benefits Promag measuring devices offer you cost-effective flow measurement with a high degree of accuracy for a wide range of process conditions. The uniform Proline transmitter concept comprises: - Modular device and operating concept resulting in a higher degree of efficiency - Software options for batching, electrode cleaning and for measuring pulsating flow - High degree of reliability and measuring stability - Uniform operating concept The tried-and-tested Promag sensors offer: - No pressure loss - Not sensitive to vibrations - Simple installation and commissioning # Table of contents | Function and system design | |---| | Measuring principle | | Measuring system | | | | Input | | Measured variable | | Measuring ranges | | Operable flow range | | Input signal | | input signal | | | | Output | | Output signal | | Signal on alarm | | Load | | Low flow cutoff | | Galvanic isolation | | Switching output | | | | Power supply7 | | Electrical connection, measuring unit | | Electrical connection, terminal assignment | | Electrical connection, remote version | | Supply voltage (power supply) | | Cable entry9 | | Remote version cable specifications | | Power consumption | | Power supply failure | | Potential equalization | | | | Performance characteristics | | | | Reference operating conditions | | Maximum measured error | | Repeatability | | | | Operating conditions: Installations14 | | Installation instructions | | Inlet and outlet run | | Adapters | | Length of connecting cable | | | | Operating conditions: Environment20 | | - | | Ambient temperature range | | Storage temperature | | Degree of protection | | Shock and vibration resistance | | Electromagnetic compatibility (EMC) | | | | Operating conditions: Process | | $Medium\ temperature\ range\ \dots \dots 21$ | | Conductivity | | Medium pressure range (nominal pressure) $\dots \dots 21$ | | Pressure tightness | | Limiting flow | | Pressure loss | | | | Mechanical construction | 24 | |------------------------------------|------------| | Design, dimensions | | | Weight | | | Measuring tube specifications | 39 | | Material | 40 | | Material load diagram | | | Fitted electrodes | | | Process connections | | | Surface roughness | 43 | | Human interface | 4 3 | | Display elements | 43 | | Operating elements | | | Language groups | | | Remote operation | 43 | | Certificates and approvals | 44 | | CE mark | | | C-tick mark | | | Pressure measuring device approval | | | Ex approval | 44 | | Other standards and guidelines | 44 | | FOUNDATION Fieldbus certification | | | MODBUS RS485 certification | | | PROFIBUS DP/PA certification | 44 | | Accessories | 45 | | Documentation | 45 | | Registered trademarks | 46 | | Order Codes | 47 | # Function and system design #### Measuring principle Following Faraday's law of magnetic induction, a voltage is induced in a conductor moving through a magnetic field. In the electromagnetic measuring principle, the flowing medium is the moving conductor. The voltage induced is proportional to the flow velocity and is supplied to the amplifier by means of two measuring electrodes. The flow volume is calculated by means of the pipe cross-sectional area. The DC magnetic field is created through a switched direct current of alternating polarity. $Ue = B \cdot L \cdot v$ $Q = A \cdot v$ Ue Induced voltage B Magnetic induction (magnetic field) L Electrode spacing v Flow velocity Q Volume flow A Pipe cross-section I Current strength #### Measuring system The measuring system consists of a transmitter and a sensor. Two versions are available: - Compact version: Transmitter and sensor form a mechanical unit. - Remote version: Sensor is mounted separate from the transmitter. #### Transmitter: - Promag 50 (user interface with push buttons for operation, two-line display, illuminated) - Promag 53 ("Touch Control" without opening the housing, four-line display, unilluminated) #### Sensor: ■ Promag W (DN 25 to 2000 / 1 to 78") | T . | | | |-----|-------------|----| | In | N 11 | 11 | | 111 | քս | u | | | - | |---------------------|--| | Measured variable | Flow velocity (proportional to induced voltage) | | Measuring ranges | Measuring ranges for liquids Typically $v=0.01$ to $10~\text{m/s}$ (0.03 to 33 ft/s) with the specified accuracy | | Operable flow range | Over 1000 : 1 | | Input signal | Status input (auxiliary input) ■ U = 3 to 30 V DC, R₁ = 5 kΩ, galvanically isolated ■ Configurable for: totalizer(s) reset, measured value suppression, error-message reset | | | Status input (auxiliary input) with PROFIBUS DP and MODBUS RS485 ■ U = 3 to 30 V DC, R_i = 3 kΩ, galvanically isolated ■ Switching level: 3 to 30 V DC, independent of polarity ■ Configurable for: totalizer(s) reset, measured value suppression, error-message reset, batching start/stop (optional), batch totalizer reset (optional) | | | Current input (only Promag 53) active/passive selectable, galvanically isolated, full scale value selectable, resolution: 3 μ A, temperature coefficient: typ. 0.005% o.r./°C (o.r. = of reading) active: 4 to 20 mA, $R_i \le 150 \Omega$, max. 24 V DC, short-circuit-proof passive: 0/4 to 20 mA, $R_i < 150 \Omega$, max. 30 V DC | # Output #### Output signal #### Promag 50 #### **Current output** active/passive selectable, galvanically isolated, time constant selectable (0.01 to 100 s), full scale value selectable, temperature coefficient: typ. 0.005% o.r./°C (o.r. = of reading), resolution: 0.5 μA - \blacksquare active: 0/4 to 20 mA, $R_L < 700~\Omega$ (HART: $R_L \ge 250~\Omega)$ - passive: 4 to 20 mA, operating voltage V_s : 18 to 30 V DC, $R_i \ge 150 \Omega$ #### Pulse/frequency output passive, open collector, 30 V DC, 250 mA, galvanically isolated - Frequency output: full scale frequency 2 to 1000 Hz ($f_{max} = 1250 \text{ Hz}$), on/off ratio 1:1, pulse width max. 10s - Pulse output: pulse value and pulse polarity selectable, max. pulse width configurable (0.5 to 2000 ms) #### PROFIBUS DP interface - Transmission technology (Physical Layer): RS485 in accordance with ANSI/TIA/EIA-485-A: 1998, galvanically isolated - Profil version 3.0 - Data transmission rate: 9,6 kBaud to 12 MBaud - Automatic data transmission rate recognition - Function blocks: 1 × analog Input, 1 × totalizer - \blacksquare Output data: volume flow, totalizer - Input data: positive zero return (ON/OFF), totalizer control, value for local display - Cyclic data transmission compatible with previous model Promag 33 - ullet Bus address adjustable via miniature switches or local display (optional) at the measuring device #### PROFIBUS PA interface - Transmission technology (Physical Layer): IEC 61158-2 (MBP), galvanically isolated - Profil version 3.0 - Current consumption: 11 mA - \blacksquare Permissible supply voltage: 9 to 32 V - Bus connection with integrated reverse polarity protection - Error current FDE (Fault Disconnection Electronic): 0 mA - Function blocks: $1 \times \text{analog input}$, $2 \times \text{totalizer}$ - Output data: volume flow, totalizer - \blacksquare Input data: positive zero return (ON/OFF), control totalizer, value for local display - Cyclic data transmission compatible with previous model Promag 33 - Bus address adjustable via miniature switches or local display (optional) at the measuring device #### Promag 53 #### Current output active/passive selectable, galvanically isolated, time constant selectable (0.01 to 100 s), full scale value selectable, temperature coefficient: typ. 0.005% o.r./°C (o.r. = of reading), resolution: $0.5~\mu$ A - active: 0/4 to 20 mA, $R_L < 700 \Omega$ (HART: $R_L \ge 250 \Omega$) - \blacksquare passive: 4 to 20 mA, operating voltage V_S : 18 to 30 V DC, $R_i \geq$ 150 Ω #### Pulse/frequency output active/passive selectable, galvanically isolated (Ex i version: only passive) - active: 24 V DC, 25 mA (max. 250 mA during 20 ms), $R_I > 100 \Omega$ - passive: open collector, 30 V DC, 250 mA - Frequency output: full scale frequency 2 to 10000 Hz (f_{max} = 12500 Hz), EEx-ia: 2 to 5000 Hz; on/off ratio 1:1, pulse width max. 10 s - Pulse output: pulse value and pulse polarity selectable, max. pulse width configurable (0.05 to 2000 ms) #### PROFIBUS DP interface - Transmission technology (Physical Layer): RS485 in accordance with ANSI/TIA/EIA-485-A: 1998, galvanically isolated - Profil version 3.0 - Data transmission rate: 9,6 kBaud to 12 MBaud - Automatic data transmission rate recognition - Function blocks: 2 × analog Input, 3 × totalizer - Output data: volume flow, calculated mass flow, totalizer 1 to 3 - Input data: positive zero return (ON/OFF), totalizer control, value for local
display - Cyclic data transmission compatible with previous model Promag 33 - Bus address adjustable via miniature switches or local display (optional) at the measuring device - Available output combination → 8 #### **PROFIBUS PA interface** - Transmission technology (Physical Layer): IEC 61158-2 (MBP), galvanically isolated - Profil version 3.0 - Current consumption: 11 mA - Permissible supply voltage: 9 to 32 V - \blacksquare Bus connection with integrated reverse polarity protection - Error current FDE (Fault Disconnection Electronic): 0 mA - Function blocks: 2 × analog input, 3 × totalizer - lacksquare Output data: volume flow, calculated mass flow, totalizer 1 to 3 - Input data: positive zero return (ON/OFF), totalizer control, value for local display - Cyclic data transmission compatible with previous model Promag 33 - Bus address adjustable via miniature switches or local display (optional) at the measuring device #### MODBUS RS485 interface - Transmission technology (Physical Layer): RS485 in accordance with ANSI/TIA/EIA-485-A: 1998, galvanically isolated - MODBUS device type: Slave - Adress range: 1 to 247 - Bus address adjustable via miniature switches or local display (optional) at the measuring device - Supported MODBUS function codes: 03, 04, 06, 08, 16, 23 - Broadcast: supported with the function codes 06, 16, 23 - Übertragungsmodus: RTU oder ASCII - Supported baudrate: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Baud - Response time: - Direct data access = typically 25 to 50 ms - Auto-scan buffer (data range) = typically 3 to 5 ms - Available output combination \rightarrow 8 #### FOUNDATION Fieldbus interface - FOUNDATION Fieldbus H1 - Transmission technology (Physical Layer): IEC 61158-2 (MBP), galvanically isolated - ITK version 5.01 - Current consumption: 12 mA - Error current FDE (Fault Disconnection Electronic): 0 mA - Bus connection with integrated reverse polarity protection - Function blocks: - $-5 \times$ Analog Input (execution time: 18 ms each) - $-1 \times PID (25 \text{ ms})$ - 1 × Digital Output (18 ms) - 1 × Signal Characterizer (20 ms) - $-1 \times \text{Input Selector (20 ms)}$ - $-1 \times Arithmetic (20 ms)$ - 1 × Integrator (18 ms) - Output data: volume flow, calculated mass flow, temperature, totalizer 1 to 3 - Input data: positive zero return (ON/OFF), reset totalizer - Link Master (LM) functionality is supported #### Signal on alarm - Current output → failure response selectable (e.g. in accordance with NAMUR recommendation NE 43) - Pulse/frequency output \rightarrow failure response selectable - Status output (Promag 50) → non-conductive by fault or power supply failure - Relay output (Promag 53) → de-energized by fault or power supply failure #### Load see "Output signal" #### Low flow cutoff Switch points for low flow cutoff are selectable. #### Galvanic isolation All circuits for inputs, outputs and power supply are galvanically isolated from each other. #### Switching output #### Status output (Promag 50, Promag 53) Open collector, max. 30 V DC / 250 mA, galvanically isolated. Configurable for: error messages, Empty Pipe Detection (EPD), flow direction, limit values. #### Relay outputs (Promag 53) Normally closed (NC or break) or normally open (NO or make) contacts available (default: relay 1 = NO, relay 2 = NC), max. 30 V / 0,5 A AC; 60 V / 0,1 A DC, galvanically isolated. Configurable for: error messages, Empty Pipe Detection (EPD), flow direction, limit values, batching contacts. # Power supply # Electrical connection, measuring unit Connecting the transmitter, cable cross-section max. 2.5 mm² (14 AWG) - A View A (field housing) - B View B (stainless steel field housing) - C View C (wall-mount housing) - *) fixed communication boards - **) flexible communication boards - a Connection compartment cover - b Cable for power supply: 85 to 260 V AC / 20 to 55 V AC / 16 to 62 V DC - Terminal No. 1: L1 for AC, L+ for DC - Terminal No. 2: N for AC, L- for DC - c Ground terminal for protective conductor - d Signal cable: see "Electrical connection, terminal assignment" → 8 Fieldbus cable: - Terminal No. 26: DP (B) / PA + / FF + / MODBUS RS485 (B) / (PA, FF: with polarity protection) - Terminal No. 27: DP (A) / PA / FF / MODBUS RS485 (A) / (PA, FF: with polarity protection) - e Ground terminal for signal cable shield / Fieldbus cable / RS485 line - f Service adapter for connecting service interface FXA193 (Fieldcheck, FieldCare) - g Signal cable: see "Electrical connection, terminal assignment" $\rightarrow 8$ - Cable for external termination (only for PROFIBUS DP with fixed assignment communication board): - Terminal No. 24: +5 V - Terminal No. 25: DGND # Electrical connection, terminal assignment # Terminal assignment, Promag 50 | Order variant | Terminal No. (inputs/outputs) | | | | | | | | |------------------|-------------------------------|-----------------|------------------------------------|--|--|--|--|--| | | 20 (+) / 21 (-) | 22 (+) / 23 (-) | 24 (+) / 25 (-) | 26 (+) / 27 (-) | | | | | | 50***-******** | - | - | = | Current output HART | | | | | | 50***-********A | - | _ | Frequency output | Current output HART | | | | | | 50***-********D | Status input | Status output | Frequency output | Current output HART | | | | | | 50***-********* | - | = | = | PROFIBUS PA | | | | | | 50***_********** | - | - | +5 V (external termination) | PROFIBUS DP | | | | | | 50***_******* | _ | - | Frequency output,
Ex i, passive | Current output, Ex i,
passive, HART | | | | | | 50***_*********T | - | - | Frequency output,
Ex i, passive | Current output, Ex i, passive, HART | | | | | Ground terminal \rightarrow 7 # Terminal assignment, Promag 53 The inputs and outputs on the communication board can be either permanently assigned or variable, depending on the version ordered (see table). Replacements for modules which are defective or which have to be replaced can be ordered as accessories. | Terminal No. (inputs/outputs) | | | | | | | | |-------------------------------|---|-------------------------|---|--|--|--|--| | 20 (+) / 21 (-) | 22 (+) / 23 (-) | 24 (+) / 25 (-) | 26 (+) / 27 (-) | | | | | | ards (fixed assignm | ent) | | 1 | | | | | | - | - | Frequency output | Current output HART | | | | | | Relay output 2 | Relay output 1 | Frequency output | Current output HART | | | | | | - | - | = | PROFIBUS PA, Ex i | | | | | | - | - | = | FOUNDATION Fieldbus, Ex i | | | | | | - | - | - | PROFIBUS PA | | | | | | - | - | - | PROFIBUS DP | | | | | | - | - | - | FOUNDATION Fieldbus | | | | | | **Q | | Status input | MODBUS RS485 | | | | | | 3***_****** - | | Frequency output, Ex i | Current output, Ex i, passive, HART | | | | | | - | - | Frequency output, Ex i | Current output, Ex i,
passive, HART | | | | | | boards | | | 1 | | | | | | Relay output 2 | Relay output 1 | Frequency output | Current output HART | | | | | | Status input | Relay output | Frequency output | Current output HART | | | | | | Status input | Relay output 2 | Relay output 1 | Current output HART | | | | | | Status input | Frequency output | Frequency output | Current output HART | | | | | | Current output | Frequency output | Status input | MODBUS RS485 | | | | | | Current output | Frequency output | Status input | PROFIBUS DP | | | | | | Relay output 2 | Relay output 1 | Status input | PROFIBUS DP | | | | | | Relay output | Current output | Frequency output | Current output HART | | | | | | Current input | Relay output | Frequency output | Current output HART | | | | | | Relay output 2 | Relay output 1 | Status input | MODBUS RS485 | | | | | | | Relay output 2 Status input Status input Status input Current output Current output Relay output 2 Relay output 2 Relay output 1 | ards (fixed assignment) | 20 (+) / 21 (-) 22 (+) / 23 (-) 24 (+) / 25 (-) ards (fixed assignment) - | | | | | Ground terminal \rightarrow 7 # Electrical connection, remote version Connecting the remote version - Wall-mount housing connection compartment - b Sensor connection housing cover - c Signal cable - d Coil current cable - n.c. Not connected, insulated cable shields Terminal no. and cable colors: 6/5 = brown; 7/8 = white; 4 = green; 36/37 = yellow #### Supply voltage (power supply) - 85 to 260 V AC, 45 to 65 Hz - 20 to 55 V AC, 45 to 65 Hz - 16 to 62 V DC PROFIBUS PA and FOUNDATION Fieldbus - Non-Ex: 9 to 32 V DC - Ex i: 9 to 24 V DC - Ex d: 9 to 32 V DC #### Cable entry Power supply and signal cables (inputs/outputs): - Cable entry M20 \times 1.5 (8 to 12 mm / 0.31 to 0.47") - Sensor cable entry for armoured cables $M20 \times 1.5$ (9.5 to 16 mm / 0.37 to 0.63") - Thread for cable entries, ½" NPT, G ½" Connecting cable for remote version: - Cable entry M20 \times 1.5 (8 to 12 mm / 0.31 to 0.47") - Sensor cable entry for armoured cables $M20 \times 1.5$ (9.5 to 16 mm / 0.37 to 0.63") - Thread for cable entries, ½" NPT, G ½" # Remote version cable specifications #### Coil cable - $2 \times 0.75 \text{ mm}^2$ (18 AWG) PVC cable with common, braided copper shield ($\varnothing \sim 7 \text{ mm} / 0.28$ ") - Conductor resistance: $\leq 37 \Omega/\text{km} (\leq 0.011 \Omega/\text{ft})$ - Capacitance core/core, shield grounded: ≤ 120 pF/m (≤ 37 pF/ft) - Operating temperature: -20 to +80 °C (-68 to +176 °F) - Cable cross-section: max. 2.5 mm² (14 AWG) - Test voltage for cable insulation: \leq 1433 AC r.m.s. 50/60 Hz or \geq 2026 V DC #### Signal cable - $3 \times 0.38 \text{ mm}^2$ (20 AWG) PVC cable with common, braided copper shield ($\varnothing \sim 7 \text{ mm} / 0.28$ ") and individual shielded cores - With empty pipe detection (EPD): 4×0.38 mm² (20 AWG) PVC cable with common, braided
copper shield ($\varnothing \sim 7$ mm / 0.28") and individual shielded cores - Conductor resistance: $\leq 50 \ \Omega/\text{km} \ (\leq 0.015 \ \Omega/\text{ft})$ - Capacitance core/shield: ≤ 420 pF/m (≤ 128 pF/ft) - Operating temperature: -20 to +80 °C (-68 to +176 °F) - Cable cross-section: max. 2.5 mm² (14 AWG) - Signal cable - Coil current cable b - Core insulation - Core shield - Core jacket - Core reinforcement - Cable shield - Outer jacket Operation in zones of severe electrical interference The measuring device complies with the general safety requirements in accordance with EN 61010 and the EMC requirements of IEC/EN 61326 and NAMUR recommendation NE 21. Grounding is by means of the ground terminals provided for the purpose inside the connection housing. Ensure that the stripped and twisted lengths of cable shield to the ground terminal are as short as possible. #### Power consumption - AC: < 15 VA (incl. sensor) - DC: < 15 W (incl. sensor) #### Switch-on current: - Max. 3 A (< 5 ms) for 260 V AC - Max. 13.5 A (< 50 ms) for 24 V DC #### Power supply failure Lasting min. ½ cycle frequency: EEPROM saves measuring system data - EEPROM or T-DAT (Promag 53 only) retain the measuring system data in the event of a power supply failure - S-DAT: exchangeable data storage chip which stores the data of the sensor (nominal diameter, serial number, calibration factor, zero point etc.) #### Potential equalization #### Warning! The measuring system must be included in the potential equalization. Perfect measurement is only ensured when the fluid and the sensor have the same electrical potential. This is ensured by the reference electrode integrated in the sensor as standard. The following should also be taken into consideration for potential equalization: - Internal grounding concepts in the company - Operating conditions, such as the material/grounding of the pipes (see table) #### Standard situation # When using the measuring device in a: • Metal, grounded pipe Potential equalization takes place via the ground terminal of the transmitter. • Note! When installing in metal pipes, we recommend you connect the ground terminal of the transmitter housing with the piping. Via the ground terminal of the transmitter #### Special situations #### Operating conditions Potential equalization When using the measuring device in a: Metal pipe that is not grounded This connection method also applies in situations where: Customary potential equalization cannot be ensured. ■ Excessively high equalizing currents can be expected. Both sensor flanges are connected to the pipe flange by means of a ground cable (copper wire, at least 6 $\mbox{mm}^2 / 0.0093~\mbox{in}^2)$ and grounded. Connect the transmitter or sensor connection housing, as applicable, to ground potential by means of the ground terminal provided for the purpose. ■ DN \leq 300 (12"): the ground cable is mounted directly on the DN ≤ 300 DN ≥ 350 conductive flange coating with the flange screws. ■ DN \geq 350 (14"): the ground cable is mounted directly on the transportation metal support. Note! The ground cable for flange-to-flange connections can be ordered separately as an accessory from Endress+Hauser. Via the ground terminal of the transmitter and the flanges of the pipe When using the measuring device in a: ■ Plastic pipe ■ Pipe with insulating lining This connection method also applies in situations where: • Customary potential equalization cannot be ensured. ■ Excessively high equalizing currents can be expected. Potential equalization takes place using additional ground disks, which are connected to the ground terminal via a ground cable (copper wire, at least 6 mm^2 / 0.0093 in^2). When installing the ground disks, please comply with the enclosed Installation Instructions. Via the ground terminal of the transmitter and the optionally available ground disks 11 #### Operating conditions When using the measuring device in a: ■ Pipe with a cathodic protection unit The device is installed potential-free in the pipe. Only the two flanges of the pipe are connected with a ground cable (copper wire, at least 6 $\rm mm^2$ / 0.0093 in²). Here, the ground cable is mounted directly on the conductive flange coating with flange screws. Note the following when installing: - The applicable regulations regarding potential-free installation must be observed. - There should be **no** electrically conductive connection between the pipe and the device. - The mounting material must withstand the applicable torques. #### Potential equalization A0011896 Potential equalization and cathodic protection - Power supply isolation transformer - 2 Electrically isolated # Performance characteristics # Reference operating conditions #### As per DIN EN 29104 and VDI/VDE 2641: - Fluid temperature: +28 °C \pm 2 K (+82 °F \pm 2 K) - Ambient temperature: +22 °C ± 2 K (+72 °F ± 2 K) - Warm-up period: 30 minutes #### Installation conditions: - Inlet run > 10 × DN - Outlet run $> 5 \times DN$ - Sensor and transmitter grounded. - The sensor is centered in the pipe. #### Maximum measured error #### Promag 50: - Current output: also typically \pm 5 μ A - Pulse output: ±0.5% o.r. ± 1 mm/s (±0.5% o.r. ± 0.04 in/s) optional: ±0.2% o.r. ± 2 mm/s (±0.2% o.r. ± 0.08 in/s) (o.r. = of reading) #### Promag 53: - Current output: also typically \pm 5 μ A - Pulse output: $\pm 0.2\%$ o.r. ± 2 mm/s ($\pm 0.2\%$ o.r. ± 0.08 in/s) (o.r. = of reading) Fluctuations in the supply voltage do not have any effect within the specified range. Max. measured error in % of reading Repeatability Max. $\pm 0.1\%$ o.r. ± 0.5 mm/s ($\pm 0.1\%$ o.r. ± 0.02 in/s) (o.r. = of reading) # Operating conditions: Installations #### Installation instructions #### Mounting location Entrained air or gas bubble formation in the measuring tube can result in an increase in measuring errors. **Avoid** the following installation locations in the pipe: - Highest point of a pipeline. Risk of air accumulating! - Directly upstream from a free pipe outlet in a vertical pipeline. Mounting location ### Installation of pumps Sensors may not be installed on the pump suction side. This precaution is to avoid low pressure and the consequent risk of damage to the lining of the measuring tube. Information on the pressure tightness of the measuring tube lining $\rightarrow 21$, Section "Pressure tightness". Pulsation dampers may be needed when using piston pumps, piston diaphragm pumps or hose pumps. Information on the shock and vibration resistance of the measuring system \rightarrow 20, Section "Shock and vibration resistance". Installation of pumps 14 #### Partially filled pipes Partially filled pipes with gradients necessitate a drain-type configuration. The empty pipe detection function (EPD) provides additional security in detecting empty or partially filled pipes. #### Caution! Risk of solids accumulating. Do not install the sensor at the lowest point in the drain. It is advisable to install a cleaning valve. Installation with partially filled pipes #### Down pipes Install a siphon or a vent valve downstream of the sensor in down pipes $h \ge 5$ m (16.4 ft). This precaution is to avoid low pressure and the consequent risk of damage to the lining of the measuring tube. This measure also prevents the liquid current stopping in the pipe which could cause air locks. Information on the pressure tightness of the measuring tube lining $\to 21$, Section "Pressure tightness". A0011 Installation measures for vertical pipes - 1 Vent valve - 2 Pipe siphon - h Length of the down pipe #### Orientation An optimum orientation helps avoid gas and air accumulations and deposits in the measuring tube. However, the measuring device also offers the additional function of empty pipe detection (EPD) for detecting partially filled measuring tubes or if outgassing fluids or fluctuating operating pressures are present. #### Vertical orientation This is the ideal orientation for self-emptying piping systems and for use in conjunction with empty pipe detection. Vertical orientation #### Horizontal orientation The measuring electrode axis should be horizontal. This prevents brief insulation of the two measuring electrodes by entrained air bubbles. #### Caution! Empty pipe detection only works correctly with horizontal orientation if the transmitter housing is facing upwards. Otherwise there is no guarantee that empty pipe detection will respond if the measuring tube is only partially filled or empty. #### Horizontal orientation - 1 EPD electrode for empty pipe detection - 2 Measuring electrodes for signal detection - Reference electrode for potential equalization #### **Vibrations** Secure the piping and the sensor if vibration is severe. #### Caution If vibrations are too severe, we recommend the sensor and transmitter be mounted separately. Information on the permitted shock and vibration resistance \rightarrow 20, Section "Shock and vibration resistance". Measures to prevent vibration of the measuring device L > 10 m (33 ft) #### Foundations, supports If the nominal diameter is DN \geq 350, mount the transmitter on a foundation of adequate load-bearing strength. #### Cauti Do not allow the casing to take the weight of the sensor. This would buckle the casing and damage the internal magnetic coils. #### Inlet and outlet run If possible, install the sensor well clear of assemblies such as valves, T-pieces, elbows etc. Note the following inlet and outlet runs to comply with measuring accuracy specifications: - Inlet run: $\geq 5 \times DN$ - Outlet run: $\geq 2 \times DN$ Inlet and outlet run #### Adapters Suitable adapters to DIN EN 545 (double-flange reducers) can be used to install the sensor in larger-diameter pipes. The resultant increase in the rate of flow improves measuring accuracy with very slow-moving fluids. The nomogram shown here can be used to calculate the pressure loss caused by reducers and
expanders. #### Note! The nomogram only applies to liquids of viscosity similar to water. - 1. Calculate the ratio of the diameters d/D. - 2. From the nomogram read off the pressure loss as a function of flow velocity (downstream from the reduction) and the d/D ratio. Pressure loss due to adapters #### Length of connecting cable When mounting the remote version, please note the following to achieve correct measuring results: - Fix cable run or lay in armored conduit. Cable movements can falsify the measuring signal especially in the case of low fluid conductivities. - Route the cable well clear of electrical machines and switching elements. - $\begin{tabular}{ll} \blacksquare & If necessary, ensure potential equalization between sensor and transmitter. \\ \blacksquare & The permitted cable length L_{max} is determined by the fluid conductivity. A minimum conductivity of L_{max} is determined by the fluid conductivity. } \end{tabular}$ $20 \mu S/cm$ is required for measuring demineralized water. - When the empty pipe detection function is switched on (EPD), the maximum connecting cable length is 10 m (33 ft). Permitted length of connecting cable for remote version Area marked in gray = permitted range; L_{max} = length of connecting cable in [m] ([ft]); fluid conductivity in [μ S/cm] # **Operating conditions: Environment** #### Ambient temperature range #### **Transmitter** - Standard: -20 to +60 °C (-4 to +140 °F) - Optional: -40 to +60 °C (-40 to +140 °F) #### Note! At ambient temperatures below -20 °C (-4 °F)the readability of the display may be impaired. #### Sensor - Flange material carbon steel: -10 to +60 °C (14 to +140 °F) - Flange material stainless steel: -40 to +60 °C (-40 to +140 °F) #### Caution! The permitted temperature range of the measuring tube lining may not be undershot or overshot $\rightarrow 21$, Section "Medium temperature range". Please note the following points: - Install the device in a shady location. Avoid direct sunlight, particularly in warm climatic regions. - The transmitter must be mounted separate from the sensor if both the ambient and fluid temperatures are high. #### Storage temperature The storage temperature corresponds to the operating temperature range of the measuring transmitter and the appropriate measuring sensors. #### Caution! - The measuring device must be protected against direct sunlight during storage in order to avoid unacceptably high surface temperatures. - A storage location must be selected where moisture does not collect in the measuring device. This will help prevent fungus and bacteria infestation which can damage the liner. - Do not remove the protective plates or caps on the process connections until the device is ready to install. #### Degree of protection - Standard: IP 67 (NEMA 4X) for transmitter and sensor. - \blacksquare Optional: IP 68 (NEMA 6P) for sensor for remote version. - For information regarding applications where the device is buried directly in the soil or is installed in a flooded wastewater basin please contact your local Endress+Hauser Sales Center. #### Shock and vibration resistance Acceleration up to 2 g following IEC 600 68-2-6 # Electromagnetic compatibility (EMC) \blacksquare As per IEC/EN 61326 and NAMUR recommendation NE 21. # **Operating conditions: Process** #### Medium temperature range The permitted temperature depends on the lining of the measuring tube: - Polyurethane: -20 to +50 °C (-4 to +122 °F) (DN 25 to 1200 / 1 to 48") - Hard rubber: ±0 to +80 °C (+32 to +176 °F) (DN 50 to 2000 / 2 to 78") #### Conductivity The minimum conductivity is: - \geq 5 µS/cm for fluids generally - \geq 20 µS/cm for demineralized water #### Note! In the remote version, the necessary minimum conductivity also depends on the cable length $(\rightarrow 19, Section "Length of connecting cable").$ # Medium pressure range (nominal pressure) - EN 1092-1 (DIN 2501) - PN 6 (DN 350 to 2000 / 14 to 78") - PN 10 (DN 200 to 2000 / 8 to 78") - PN 16 (DN 65 to 2000 / 3 to 78") - PN 25 (DN 200 to 1000 / 8 to 40") - PN 40 (DN 25 to 150 / 1 to 6") - ANSI B 16.5 - Class 150 (DN 1 to 24") - Class 300 (DN 1 to 6") - AWWA - Class D (DN 28 to 78") - JIS B2220 - 10 K (DN 50 to 300 / 2 to 12") - 20 K (DN 25 to 300 / 1 to 12") - AS 2129 - Table E (DN 80, 100, 150 to 400, 500, 600 / 3", 4", 6 to 16", 20", 24") - AS 4087 - PN 16 (DN 80, 100, 150 to 400, 500, 600 / 3", 4", 6 to 16", 20", 24") #### Pressure tightness # Measuring tube lining: Polyurethane | Nominal | diameter | Limit values for abs. pressure [mbar] ([psi]) at fluid temperatures: | | | | | |------------|----------|--|--------------|----------------|-------|--| | | | 25 °C | (77 °F) | 50 °C (122 °F) | | | | [mm] | [inch] | [mbar] | [psi] [mbar] | | [psi] | | | 25 to 1200 | 1 to 48" | 0 | 0 | 0 | 0 | | #### Measuring tube lining: Hard rubber | Nominal diameter Limit values for abs. pressure [mbar] ([psi]) at fluid tempera | | | | | | ures: | | |---|----------|--------|---------------------------------|--------|----------------|--------|---------| | | | 25 °C | 77°F) 50 °C (122 °F) 80 °C (176 | | 50 °C (122 °F) | | 176 °F) | | [mm] | [inch] | [mbar] | [psi] | [mbar] | [psi] | [mbar] | [psi] | | 50 to 2000 | 2 to 78" | 0 | 0 | 0 | 0 | 0 | 0 | # Limiting flow The diameter of the pipe and the flow rate determine the nominal diameter of the sensor. The optimum flow velocity is between 2 to 3 m/s (6.5 to 9.8 ft/s). The velocity of flow (v), moreover, has to be matched to the physical properties of the fluid: - v < 2 m/s (6.5 ft/s): for abrasive fluids such as potter's clay, lime milk, ore slurry etc. v > 2 m/s (6.5 ft/s): for fluids causing build-up such as wastewater sludges etc. | Flow characteristic values (SI units) | | | | | | | | | | | |---------------------------------------|--------|----------------------------------|------------------------------------|-----------------------|-------------------------|--|--|--|--|--| | Dian | neter | Recommended flow | Factory settings | | | | | | | | | | | Min./max. full scale value | Full scale value
Current output | | | | | | | | | [mm] | [inch] | (v ~ 0.3 or 10 m/s) | (v ~ 2.5 m/s) | (~ 2 pulses/s) | (v ~ 0.04 m/s) | | | | | | | 25 | 1" | 9 to 300 dm ³ /mir | 75 dm ³ /min | 0.50dm^3 | 1 dm ³ /min | | | | | | | 32 | - | 15 to 500 dm ³ /mir | 125 dm ³ /min | 1.00 dm ³ | 2 dm ³ /min | | | | | | | 40 | 11/2" | 25 to 700 dm ³ /mir | 200 dm ³ /min | 1.50 dm ³ | 3 dm ³ /min | | | | | | | 50 | 2" | 35 to 1100 dm ³ /mir | $300 \text{ dm}^3/\text{min}$ | 2.50 dm^3 | 5 dm ³ /min | | | | | | | 65 | Î | 60 to 2000 dm ³ /mir | $500 \text{ dm}^3/\text{min}$ | 5.00 dm ³ | 8 dm ³ /min | | | | | | | 80 | 3" | 90 to 3000 dm ³ /mir | 750 dm ³ /min | 5.00 dm ³ | 12 dm ³ /min | | | | | | | 100 | 4" | 145 to 4700 dm ³ /mir | 1200 dm ³ /min | 10.00 dm ³ | 20 dm ³ /min | | | | | | | 125 | İ | 220 to 7500 dm ³ /mir | 1850 dm ³ /min | 15.00 dm ³ | 30 dm ³ /min | | | | | | | 150 | 6" | 20 to 600 m ³ /h | 150 m ³ /h | 0.025 m ³ | 2.5 m ³ /h | | | | | | | 200 | 8" | 35 to 1100 m ³ /h | 300 m ³ /h | 0.05 m ³ | 5.0 m ³ /h | | | | | | | 250 | 10" | 55 to 1700 m ³ /h | 500 m ³ /h | 0.05 m ³ | 7.5 m ³ /h | | | | | | | 300 | 12" | 80 to 2400 m ³ /h | 750 m ³ /h | 0.10 m ³ | 10 m ³ /h | | | | | | | 350 | 14" | 110 to 3300 m ³ /h | 1000 m ³ /h | 0.10 m ³ | 15 m ³ /h | | | | | | | 375 | 15" | 140 to 4200 m ³ /h | 1200 m ³ /h | 0.15 m ³ | 20 m ³ /h | | | | | | | 400 | 16" | 140 to 4200 m ³ /h | 1200 m ³ /h | 0.15 m ³ | 20 m ³ /h | | | | | | | 450 | 18" | 180 to 5400 m ³ /h | 1500 m ³ /h | 0.25 m ³ | 25 m ³ /h | | | | | | | 500 | 20" | 220 to 6600 m ³ /h | 2000 m ³ /h | 0.25 m ³ | 30 m ³ /h | | | | | | | 600 | 24" | 310 to 9600 m ³ /h | 2500 m ³ /h | 0.30 m ³ | 40 m ³ /h | | | | | | | 700 | 28" | 420 to 13500 m ³ /h | 3500 m ³ /h | 0.50 m ³ | 50 m ³ /h | | | | | | | - | 30" | 480 to 15000 m ³ /h | 4000 m ³ /h | 0.50 m ³ | 60 m ³ /h | | | | | | | 800 | 32" | 550 to 18000 m ³ /h | 4500 m ³ /h | 0.75 m ³ | 75 m ³ /h | | | | | | | 900 | 36" | 690 to 22500 m ³ /h | 6000 m ³ /h | 0.75 m ³ | 100 m ³ /h | | | | | | | 1000 | 40" | 850 to 28000 m ³ /h | 7000 m ³ /h | 1.00 m ³ | 125 m ³ /h | | | | | | | - | 42" | 950 to 30000 m ³ /h | 8000 m ³ /h | 1.00 m ³ | 125 m ³ /h | | | | | | | 1200 | 48" | 1250 to 40000 m ³ /h | 10000 m ³ /h | 1.50 m ³ | 150 m ³ /h | | | | | | | - | 54" | 1550 to 50000 m ³ /h | 13000 m ³ /h | 1.50 m ³ | 200 m ³ /h | | | | | | | 1400 | - | 1700 to 55000 m ³ /h | 14000 m ³ /h | 2.00 m ³ | 225 m ³ /h | | | | | | | - | 60" | 1950 to 60000 m ³ /h | 16000 m ³ /h | 2.00 m ³ | 250 m ³ /h | | | | | | | 1600 | _ | 2200 to 70000 m ³ /h | 18000 m ³ /h | 2.50 m ³ | 300 m ³ /h | | | | | | | - | 66" | 2500 to 80000 m ³ /h | 20500 m ³ /h | 2.50 m ³ | 325 m ³ /h | | | | | | | 1800 | 72" | 2800 to 90000 m ³ /h | 23000 m ³ /h | 3.00 m ³ | 350 m ³ /h | | | | | | | _ | 78" | 3300 to 100000 m ³ /h | 28500 m ³ /h | 3.50 m ³ | 450 m ³ /h | | | | | | | 2000 | - | 3400 to 110000 m ³ /h | 28500 m ³ /h | 3.50 m ³ | 450 m ³ /h | | | | | | | Flow characteristic values (US units) | | | | | | | | | | | | |---------------------------------------|-------|-------------------|------------|------------------|----------------------|-----------|-------|----------|-----------|--|--| | Dian | neter | Recommended | flow rate | Factory settings | | | | | | | | | | | Min./max. full so | cale value | | le value
t output | Pulse va | alue | Low flow | | | | | [inch] | [mm] | (v ~ 0.3 or 10 |) m/s) | (v ~ 2. | 5 m/s) | (~ 2 puls | es/s) | (v ~ 0 | 0.04 m/s) | | | | 1" | 25 | 2.5 to 80 | gal/min | 18 | gal/min | 0.20 | gal | 0.25 | gal/min | | | | | 32 | 4 to 130 | gal/min | 30 | gal/min | 0.20 | gal | 0.50 | gal/min | | | | 1½" | 40 | 7 to 190 | gal/min | 50 | gal/min | 0.50 | gal | 0.75 | gal/min | | | | 2" | 50 | 10 to 300 | gal/min | 75 |
gal/min | 0.50 | gal | 1.25 | gal/min | | | | - | 65 | 16 to 500 | gal/min | 130 | gal/min | 1 | gal | 2.0 | gal/min | | | | 3" | 80 | 24 to 800 | gal/min | 200 | gal/min | 2 | gal | 2.5 | gal/min | | | | 4" | 100 | 40 to 1250 | gal/min | 300 | gal/min | 2 | gal | 4.0 | gal/min | | | | - | 125 | 60 to 1950 | gal/min | 450 | gal/min | 5 | gal | 7.0 | gal/min | | | | 6" | 150 | 90 to 2650 | gal/min | 600 | gal/min | 5 | gal | 12 | gal/min | | | | 8" | 200 | 155 to 4850 | gal/min | 1200 | gal/min | 10 | gal | 15 | gal/min | | | | 10" | 250 | 250 to 7500 | gal/min | 1500 | gal/min | 15 | gal | 30 | gal/min | | | | 12" | 300 | 350 to 10600 | gal/min | 2400 | gal/min | 25 | gal | 45 | gal/min | | | | 14" | 350 | 500 to 15000 | gal/min | 3600 | gal/min | 30 | gal | 60 | gal/min | | | | 15" | 375 | 600 to 19000 | gal/min | 4800 | gal/min | 50 | gal | 60 | gal/min | | | | 16" | 400 | 600 to 19000 | gal/min | 4800 | gal/min | 50 | gal | 60 | gal/min | | | | 18" | 450 | 800 to 24000 | gal/min | 6000 | gal/min | 50 | gal | 90 | gal/min | | | | 20" | 500 | 1000 to 30000 | gal/min | 7500 | gal/min | 75 | gal | 120 | gal/min | | | | 24" | 600 | 1400 to 44000 | gal/min | 10500 | gal/min | 100 | gal | 180 | gal/min | | | | 28" | 700 | 1900 to 60000 | gal/min | 13500 | gal/min | 125 | gal | 210 | gal/min | | | | 30" | - | 2150 to 67000 | gal/min | 16500 | gal/min | 150 | gal | 270 | gal/min | | | | 32" | 800 | 2450 to 80000 | gal/min | 19500 | gal/min | 200 | gal | 300 | gal/min | | | | 36" | 900 | 3100 to 100000 | gal/min | 24000 | gal/min | 225 | gal | 360 | gal/min | | | | 40" | 1000 | 3800 to 125000 | gal/min | 30000 | gal/min | 250 | gal | 480 | gal/min | | | | 42" | - | 4200 to 135000 | gal/min | 33000 | gal/min | 250 | gal | 600 | gal/min | | | | 48" | 1200 | 5500 to 175000 | gal/min | 42000 | gal/min | 400 | gal | 600 | gal/min | | | | 54" | _ | 9 to 300 | Mgal/min | 75 | Mgal/min | 0.0005 | Mgal | 1.3 | Mgal/min | | | | - | 1400 | 10 to 340 | Mgal/min | 85 | Mgal/min | 0.0005 | Mgal | 1.3 | Mgal/min | | | | 60" | - | 12 to 380 | Mgal/min | 95 | Mgal/min | 0.0005 | Mgal | 1.3 | Mgal/min | | | | - | 1600 | 13 to 450 | Mgal/min | 110 | Mgal/min | 0.0008 | Mgal | 1.7 | Mgal/min | | | | 66" | - | 14 to 500 | Mgal/min | 120 | Mgal/min | 0.0008 | Mgal | 2.2 | Mgal/min | | | | 72" | 1800 | 16 to 570 | Mgal/min | 140 | Mgal/min | 0.0008 | Mgal | 2.6 | Mgal/min | | | | 78" | - | 18 to 650 | Mgal/min | 175 | Mgal/min | 0.001 | Mgal | 3.0 | Mgal/min | | | | _ | 2000 | 20 to 700 | Mgal/min | 175 | Mgal/min | 0.001 | Mgal | 3.0 | Mgal/min | | | # Pressure loss - No pressure loss if the sensor is installed in a pipe with the same nominal diameter. Pressure losses for configurations incorporating adapters according to DIN EN 545 (→ 18, Section "Adapters"). # Mechanical construction # Design, dimensions # Transmitter remote version, wall-mount housing (non Ex-zone and II3G/Zone 2) # Dimensions (SI units) | A | В | С | D | Е | F | G | Н | J | |-----|-----|------|-------|------|------|-----|--------|----| | 215 | 250 | 90.5 | 159.5 | 135 | 90 | 45 | > 50 | 81 | | K | L | М | N | 0 | Р | α | R | S | | 53 | 95 | 53 | 102 | 81.5 | 11.5 | 192 | 8 × M5 | 20 | All dimensions in [mm] # Dimensions (US units) | A | В | С | D | Е | F | G | Н | J | |------|------|------|------|------|------|------|--------|------| | 8.46 | 9.84 | 3.56 | 6.27 | 5.31 | 3.54 | 1.77 | > 1.97 | 3.18 | | K | L | М | N | 0 | Р | a | R | S | | 2.08 | 3.74 | 2.08 | 4.01 | 3.20 | 0.45 | 7.55 | 8 × M5 | 0.79 | All dimensions in [inch] # Transmitter remote version, connection housing (II2GD/Zone 1) A000212 # Dimensions (SI units) | A | A* | В | B* | С | D | Е | ØF | G | Н | J | K | L | М | |-----|-----|-----|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-----|-----| | 265 | 242 | 240 | 217 | 206 | 186 | 178 | 8.6
(M8) | 100 | 130 | 100 | 144 | 170 | 355 | All dimensions in [mm] # Dimensions (US units) | A | A* | В | В* | С | D | Е | ØF | G | Н | J | K | L | M | |------|------|------|------|------|------|------|--------------|------|------|------|------|------|------| | 10.4 | 9.53 | 9.45 | 8.54 | 8.11 | 7.32 | 7.01 | 0.34
(M8) | 3.94 | 5.12 | 3.94 | 5.67 | 6.69 | 14.0 | All dimensions in [inch] There is a separate mounting kit for the wall-mounted housing. It can be ordered from Endress+Hauser as an accessory. The following installation variants are possible: - lacktriangle Panel-mounted installation - Pipe mounting # Installation in control panel # Pipe mounting # Compact version DN \leq 300 (12") #### Dimensions (SI units) | DN | L 1) | A | A* | В | С | D | Е | F | G | Н | K | |-----------------------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | EN (DIN) / JIS / AS ²⁾ | | | | | | | | | | | | | 25 | 200 | | | | | | 341 | 257 | 84 | 94 | 120 | | 32 | 200 | | | | | | 341 | 257 | 84 | 94 | 120 | | 40 | 200 | | | | | | 341 | 257 | 84 | 94 | 120 | | 50 | 200 | | | | | | 341 | 257 | 84 | 94 | 120 | | 65 | 200 | | | | | | 391 | 282 | 109 | 94 | 180 | | 80 | 200 | 227 | 207 | 187 | 168 | 160 | 391 | 282 | 109 | 94 | 180 | | 100 | 250 | 221 | 207 | 107 | 100 | 100 | 391 | 282 | 109 | 94 | 180 | | 125 | 250 | | | | | | 472 | 322 | 150 | 140 | 260 | | 150 | 300 | | | | | | 472 | 322 | 150 | 140 | 260 | | 200 | 350 | | | | | | 527 | 347 | 180 | 156 | 324 | | 250 | 450 | | | | | | 577 | 372 | 205 | 166 | 400 | | 300 | 500 | | | | | | 627 | 397 | 230 | 166 | 460 | $^{^{1)}}$ The length is regardless of the pressure rating selected. Fitting length to DVGW. $^{2)}$ For flanges to AS, only the nominal diameters DN 80, 100 and 150 to 300 are available. All dimensions in [mm] # Dimensions (US units) | DN | L 1) | A | A* | В | С | D | Е | F | G | Н | K | |-------|------|------|------|------|------|------|------|------|------|------|------| | ANSI | | | | | | | | | | | | | 1" | 7.87 | | | | | | 13.4 | 10.1 | 3.31 | 3.70 | 4.72 | | 11/2" | 7.87 | | | | | | 13.4 | 10.1 | 3.31 | 3.70 | 4.72 | | 2" | 7.87 | | | | | | 13.4 | 10.1 | 3.31 | 3.70 | 4.72 | | 3" | 7.87 | | | | | | 15.4 | 11.1 | 4.29 | 3.70 | 7.09 | | 4" | 9.84 | 8.94 | 8.15 | 7.36 | 6.61 | 6.30 | 15.4 | 11.1 | 4.29 | 3.70 | 7.09 | | 6" | 11.8 | | | | | | 18.6 | 12.7 | 5.91 | 5.51 | 10.2 | | 8" | 13.8 | | | | | | 20.8 | 13.7 | 7.09 | 6.14 | 12.8 | | 10" | 17.7 | | | | | | 22.7 | 14.7 | 8.07 | 6.14 | 15.8 | | 12" | 19.7 | | | | | | 24.7 | 15.6 | 9.06 | 6.54 | 18.1 | $^{^{\}rm 1)}$ The length is regardless of the pressure rating selected. Fitting length to DVGW. All dimensions in [inch] # Compact version DN \geq 350 (14") #### Dimensions (SI units) | DN | L 1) | A | A* | В | С | D | Е | F | G | Н | J | |------------------|------|-----|-----|-----|-----|-----|--------|--------|--------|------|------| | EN (DIN) / AS 2) | | | | | | | | | | | | | 350 | 550 | | | | | | 738.5 | 456.5 | 282.0 | 276 | 564 | | 375 | 600 | | | | | | 790.5 | 482.5 | 308.0 | 276 | 616 | | 400 | 600 | | | | | | 790.5 | 482.5 | 308.0 | 276 | 616 | | 450 | 650 | | | | | | 840.5 | 507.5 | 333.0 | 292 | 666 | | 500 | 650 | | | | | | 891.5 | 533.0 | 358.5 | 292 | 717 | | 600 | 780 | | | | | | 995.5 | 585.0 | 410.5 | 402 | 821 | | 700 | 910 | | | | | | 1198.5 | 686.5 | 512.0 | 589 | 1024 | | 750 | 975 | | | | | | 1198.5 | 686.5 | 512.0 | 626 | 1024 | | 800 | 1040 | | | | | | 1241.5 | 708.5 | 533.5 | 647 | 1067 | | 900 | 1170 | 227 | 207 | 187 | 168 | 160 | 1394.5 | 784.5 | 610.0 | 785 | 1220 | | 1000 | 1300 | 221 | 207 | 107 | 100 | 100 | 1546.5 | 860.5 | 686.0 | 862 | 1372 | | 1050 | 1365 | | | | | | 1598.5 | 886.5 | 712.0 | 912 | 1424 | | 1200 | 1560 | | | | | | 1796.5 | 985.5 | 811.0 | 992 | 1622 | | 1350 | 1755 | | | | | | 1998.5 | 1086.5 | 912.0 | 1252 | 1824 | | 1400 | 1820 | | | | | | 2148.5 | 1161.5 | 987.0 | 1252 | 1974 | | 1500 | 1950 | | | | | | 2196.5 | 1185.5 | 1011.0 | 1392 | 2022 | | 1600 | 2080 | | | | | | 2286.5 | 1230.5 | 1056.0 | 1482 | 2112 | | 1650 | 2145 | | | | | | 2360.5 | 1267.5 | 1093.0 | 1482 | 2186 | | 1800 | 2340 | | | | | | 2550.5 | 1362.5 | 1188.0 | 1632 | 2376 | | 2000 | 2600 | | | | | | 2650.5 | 1412.5 | 1238.0 | 1732 | 2476 | ¹⁾ The length is regardless of the pressure rating selected. Fitting length to DVGW. ²⁾ For flanges to AS, only DN 350, 400, 500 and 600 are available. All dimensions in [mm] # Dimensions (US units) | DN | L 1) | A | A* | В | С | D | Е | F | G | Н | J | |----------------|-------|------|------|------|------|------|-------|------|------|------|------| | ANSI / AWWA 2) | | | | | | | | | | | | | 14" | 21.6 | | | | | | 29.1 | 17.9 | 11.1 | 10.9 | 22.2 | | 15" | 23.6 | | | | | | 31.1 | 18.9 | 12.1 | 10.9 | 24.2 | | 16" | 23.6 | | | | | | 31.1 | 18.9 | 12.1 | 10.9 | 24.2 | | 18" | 25.6 | | | | | | 33.1 | 19.9 | 13.1 | 11.5 | 26.2 | | 20" | 25.6 | | | | | | 35.1 | 20.9 | 14.1 | 11.5 | 28.2 | | 24" | 30.7 | | | | | | 39.2 | 23.0 | 16.2 | 15.8 | 32.3 | | 28" | 35.8 | | | | | | 47.2 | 27.0 | 20.1 | 23.2 | 40.3 | | 30" | 38.4 | | | | | | 47.2 | 27.0 | 20.1 | 24.6 | 40.3 | | 32" | 40.9 | | | | | | 48.9 | 27.9 | 21.0 | 25.5 | 42.0 | | 36" | 46.0 | 8.94 | 8.15 | 7.36 | 6.61 | 6.30 | 54.9 | 30.9 | 24.0 | 30.9 | 48.0 | | 40" | 51.2 | 0.94 | 0.15 | 7.30 | 0.01 | 0.30 | 60.9 | 33.9 | 27.0 | 33.9 | 54.0 | | 42" | 53.7 | | | | | | 62.9 | 34.9 | 28.0 | 35.9 | 56.0 | | 48" | 61.4 | | | | | | 71.7 | 38.8 | 31.9 | 39.0 | 63.8 | | 54" | 69.1 | | | | | | 78.7 | 42.8 | 35.9 | 42.3 | 71.8 | | 56" | 71.7 | | | | | | 84.6 | 45.7 | 38.9 | 49.3 | 77.7 | | 60" | 76.8 | | | | | | 86.5 | 46.7 | 39.8 | 54.8 | 79.6 | | 64" | 81.9 | | | | | | 90.0 | 48.4 | 41.6 | 58.4 | 83.2 | | 66" | 84.4 | | | | | | 92.9 | 49.9 | 43.0 | 58.4 | 86.0 | | 72" | 92.1 | | | | | | 100.4 | 53.6 | 46.8 | 64.2 | 93.5 | | 78" | 102.3 | | | | | | 104.3 | 55.6 | 48.7 | 68.2 | 97.5 | $^{^{1)}}$ The length is regardless of the pressure rating selected. Fitting length to DVGW. $^{2)}$ Flanges ≤ 24 " only to ANSI available, ≥ 28 " only to AWWA available. All dimensions in [inch] # Sensor, remote version DN \leq 300
(12") #### Dimensions (SI units) | DN | L 1) | A | В | С | D | Е | F | G | Н | J | |-----------------------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----| | EN (DIN) / JIS / AS ²⁾ | | | | | | | | | | | | 25 | 200 | 129 | 163 | 143 | 102 | 286 | 202 | 84 | 120 | 94 | | 32 | 200 | 129 | 163 | 143 | 102 | 286 | 202 | 84 | 120 | 94 | | 40 | 200 | 129 | 163 | 143 | 102 | 286 | 202 | 84 | 120 | 94 | | 50 | 200 | 129 | 163 | 143 | 102 | 286 | 202 | 84 | 120 | 94 | | 65 | 200 | 129 | 163 | 143 | 102 | 336 | 227 | 109 | 180 | 94 | | 80 | 200 | 129 | 163 | 143 | 102 | 336 | 227 | 109 | 180 | 94 | | 100 | 250 | 129 | 163 | 143 | 102 | 336 | 227 | 109 | 180 | 94 | | 125 | 250 | 129 | 163 | 143 | 102 | 417 | 267 | 150 | 260 | 140 | | 150 | 300 | 129 | 163 | 143 | 102 | 417 | 267 | 150 | 260 | 140 | | 200 | 350 | 129 | 163 | 143 | 102 | 472 | 292 | 180 | 324 | 156 | | 250 | 450 | 129 | 163 | 143 | 102 | 522 | 317 | 205 | 400 | 166 | | 300 | 500 | 129 | 163 | 143 | 102 | 572 | 342 | 230 | 460 | 166 | ¹⁾ The length is regardless of the pressure rating selected. Fitting length to DVGW. ²⁾ For flanges to AS, only the nominal diameters DN 80, 100 and 150 to 300 are available. All dimensions in [mm] # Dimensions (US units) | DN | L 1) | A | В | С | D | Е | F | G | Н | J | |-------|------|------|------|------|------|------|------|------|------|------| | ANSI | | | | | | | | | | | | 1" | 7.87 | 5.08 | 6.42 | 5.63 | 4.02 | 11.3 | 7.95 | 3.32 | 4.72 | 3.70 | | 11/2" | 7.87 | 5.08 | 6.42 | 5.63 | 4.02 | 11.3 | 7.95 | 3.32 | 4.72 | 3.70 | | 2" | 7.87 | 5.08 | 6.42 | 5.63 | 4.02 | 11.3 | 7.95 | 3.32 | 4.72 | 3.70 | | 3" | 7.87 | 5.08 | 6.42 | 5.63 | 4.02 | 13.2 | 8.94 | 4.30 | 7.10 | 3.70 | | 4" | 9.84 | 5.08 | 6.42 | 5.63 | 4.02 | 13.2 | 8.94 | 4.30 | 7.10 | 3.70 | | 6" | 11.8 | 5.08 | 6.42 | 5.63 | 4.02 | 16.4 | 10.5 | 5.91 | 10.2 | 5.51 | | 8" | 13.8 | 5.08 | 6.42 | 5.63 | 4.02 | 18.6 | 11.5 | 7.10 | 12.8 | 6.14 | | 10" | 17.7 | 5.08 | 6.42 | 5.63 | 4.02 | 20.6 | 12.5 | 8.08 | 15.8 | 6.14 | | 12" | 19.7 | 5.08 | 6.42 | 5.63 | 4.02 | 22.5 | 13.5 | 9.06 | 18.1 | 6.54 | $^{^{\}rm 1)}$ The length is regardless of the pressure rating selected. Fitting length to DVGW. All dimensions in [inch] # Sensor, remote version DN \geq 350 (14") # Dimensions (SI units) | DN | L 1) | А | В | С | D | Е | F | G | Н | J | |------------------|------|-----|-----|-----|-----|--------|--------|--------|------|------| | EN (DIN) / AS 2) | | | | | | | | | | | | 350 | 550 | | | | | 683.5 | 401.5 | 282.0 | 564 | 276 | | 375 | 600 | | | | | 735.5 | 427.5 | 308.0 | 616 | 276 | | 400 | 600 | | | | | 735.5 | 427.5 | 308.0 | 616 | 276 | | 450 | 650 | | | | | 785.5 | 452.5 | 333.0 | 666 | 292 | | 500 | 650 | | | | | 836.5 | 478.0 | 358.5 | 717 | 292 | | 600 | 780 | | | | | 940.5 | 530.0 | 410.5 | 821 | 402 | | 700 | 910 | | | | | 1143.5 | 631.5 | 512.0 | 1024 | 589 | | 750 | 975 | | | | | 1143.5 | 631.5 | 512.0 | 1024 | 626 | | 800 | 1040 | | | | | 1186.5 | 653.0 | 533.5 | 1067 | 647 | | 900 | 1170 | 129 | 163 | 143 | 102 | 1339.5 | 729.5 | 610.0 | 1220 | 785 | | 1000 | 1300 | 129 | 103 | 143 | 102 | 1491.5 | 805.5 | 686.0 | 1372 | 862 | | 1050 | 1365 | | | | | 1543.5 | 831.5 | 712.0 | 1424 | 912 | | 1200 | 1560 | | | | | 1741.5 | 930.5 | 811.0 | 1622 | 992 | | 1350 | 1755 | | | | | 1943.5 | 1031.5 | 912.0 | 1824 | 1252 | | 1400 | 1820 | | | | | 2093.5 | 1106.5 | 987.0 | 1974 | 1252 | | 1500 | 1950 | | | | | 2141.5 | 1130.5 | 1011.0 | 2022 | 1392 | | 1600 | 2080 | | | | | 2231.5 | 1175.5 | 1056.0 | 2112 | 1482 | | 1650 | 2145 | | | | | 2305.5 | 1212.5 | 1093.0 | 2186 | 1482 | | 1800 | 2340 | | | | | 2495.5 | 1307.5 | 1188.0 | 2376 | 1632 | | 2000 | 2600 | | | | | 2595.5 | 1357.5 | 1238.0 | 2476 | 1732 | ¹⁾ The length is regardless of the pressure rating selected. Fitting length to DVGW. ²⁾ For flanges to AS, only DN 350, 400, 500 and 600 are available. All dimensions in [mm] # Dimensions (US units) | DN | L 1) | А | В | С | D | Е | F | G | Н | J | |---------------------------|-------|------|------|------|------|-------|------|------|------|------| | ANSI / AWWA ²⁾ | | | | | | | | | | | | 14" | 21.6 | | | | | 29.1 | 15.8 | 11.1 | 22.2 | 10.9 | | 15" | 23.6 | | | | | 31.1 | 16.8 | 12.1 | 24.2 | 10.9 | | 16" | 23.6 | | | | | 31.1 | 16.8 | 12.1 | 24.2 | 10.9 | | 18" | 25.6 | | | | | 33.1 | 17.8 | 13.1 | 26.2 | 11.5 | | 20" | 25.6 | | | | | 35.1 | 18.8 | 14.1 | 28.2 | 11.5 | | 24" | 30.7 | | | | | 39.2 | 20.9 | 16.2 | 32.3 | 15.8 | | 28" | 35.8 | | | | | 45.0 | 24.9 | 20.1 | 40.3 | 23.2 | | 30" | 38.4 | | | | | 45.0 | 24.9 | 20.1 | 40.3 | 24.6 | | 32" | 40.9 | | | | | 46.7 | 25.7 | 21.0 | 42.0 | 25.5 | | 36" | 46.0 | 5.08 | 6.42 | 5.63 | 4.02 | 52.7 | 28.7 | 24.0 | 48.0 | 30.9 | | 40" | 51.2 | 3.00 | 0.42 | 3.03 | 4.02 | 58.7 | 31.7 | 27.0 | 54.0 | 33.9 | | 42" | 53.7 | | | | | 60.7 | 32.7 | 28.0 | 56.0 | 35.9 | | 48" | 61.4 | | | | | 68.5 | 36.6 | 31.9 | 63.8 | 39.0 | | 54" | 69.1 | | | | | 76.5 | 40.6 | 35.9 | 71.8 | 42.3 | | 56" | 71.7 | | | | | 82.4 | 43.6 | 38.9 | 77.7 | 49.3 | | 60" | 76.8 | | | | | 84.3 | 44.5 | 39.8 | 79.6 | 54.8 | | 64" | 81.9 | | | | | 87.9 | 46.3 | 41.6 | 83.2 | 58.4 | | 66" | 84.4 | | | | | 90.8 | 47.7 | 43.0 | 86.0 | 58.4 | | 72" | 92.1 | | | | | 98.2 | 51.5 | 46.8 | 93.5 | 64.2 | | 78" | 102.3 | | | | | 102.2 | 53.4 | 48.7 | 97.5 | 68.2 | $^{^{1)}}$ The length is regardless of the pressure rating selected. Fitting length to DVGW. $^{2)}$ Flanges $\leq 24"$ only to ANSI available, $\geq 28"$ only to AWWA available. All dimensions in [inch] # Ground disk for flange connections #### Dimensions (SI units) | DN 1) | A | В | С | D | Е | t | |-----------------------------------|-----|-----|-------|------|-----|---| | EN (DIN) / JIS / AS ²⁾ | | | | | | | | 25 | 26 | 62 | 77.5 | 87.5 | | | | 32 | 35 | 80 | 87.5 | 94.5 | | | | 40 | 41 | 82 | 101 | 103 | | | | 50 | 52 | 101 | 115.5 | 108 | | | | 65 | 68 | 121 | 131.5 | 118 | | | | 80 | 80 | 131 | 154.5 | 135 | | | | 100 | 104 | 156 | 186.5 | 153 | 6.5 | | | 125 | 130 | 187 | 206.5 | 160 | | | | 150 | 158 | 217 | 256 | 184 | | | | 200 | 206 | 267 | 288 | 205 | | 2 | | 250 | 260 | 328 | 359 | 240 | | | | 300 3) | 312 | 375 | 413 | 273 | | | | 300 4) | 310 | 375 | 404 | 268 | | | | 350 ³⁾ | 343 | 433 | 479 | 365 | | | | 375 ³⁾ | 393 | 480 | 542 | 395 | | | | 400 3) | 393 | 480 | 542 | 395 | 0.0 | | | 450 ³⁾ | 439 | 538 | 583 | 417 | 9.0 | | | 500 ³⁾ | 493 | 592 | 650 | 460 | | | | 600 ³⁾ | 593 | 693 | 766 | 522 | | | $^{^{1)}}$ Ground disks can be used for all flange standards/pressure ratings that can be delivered, except for DN \geq 300. $^{2)}$ Only DN 32, 40, 65 and 125 are available for flanges according to AS. All dimensions in [mm] ³⁾ PN 10/16 ⁴⁾ PN 25, JIS 10K/20K # Dimensions (US units) | DN 1) | A | В | С | D | Е | t | |-------|-------|------|-------|------|------|------| | ANSI | | | | | | | | 1" | 1.02 | 2.44 | 3.05 | 3.44 | | | | 1½" | 1.61 | 3.23 | 3.98 | 4.06 | | | | 2" | 2.05 | 3.98 | 4.55 | 4.25 | | | | 3" | 3.15 | 5.16 | 6.08 | 5.31 | | | | 4" | 4.09 | 6.14 | 7.34 | 6.02 | 0.26 | | | 6" | 6.22 | 8.54 | 10.08 | 7.24 | | | | 8" | 8.11 | 10.5 | 11.3 | 8.07 | | | | 10" | 10.2 | 12.9 | 14.1 | 9.45 | | 0.08 | | 12" | 12.3 | 14.8 | 16.3 | 10.8 | | | | 14" | 13.5 | 17.1 | 18.9 | 14.4 | | | | 15" | 15.45 | 18.9 | 21.3 | 15.6 | | | | 16" | 15.45 | 18.9 | 21.3 | 15.6 | 0.35 | | | 18" | 17.3 | 21.2 | 23.0 | 16.4 | 0.33 | | | 20" | 19.4 | 23.3 | 25.6 | 18.1 | | | | 24" | 23.4 | 27.3 | 30.1 | 20.6 | | | Ground disks can be used for all flange standards/pressure ratings. All dimensions in [inch] ### Weight ### Weight in SI units | | data in l | kg
 | | ٠ | | | | | | D | | : (- | :414 | .h. | |------|----------------|-----------------|-----------------------------|-----|-------|-----------|----------------|--------------------------------|-----------------------------|-----|---------|-----------|------|---------------------------------| | | ninal
neter | Compact version | | | | | | Remote version (without cable) | | | | | | | | [mm] | [inch] | EN | (DIN) /
AS ¹⁾ | | JIS | | ANSI /
AWWA | EN | (DIN) /
AS ¹⁾ | | JIS JIS | 1 | | Transmitter Wall-mount housing | | 25 | 1" | | 7.3 | | 7.3 | F | 7.3 | | 5.3 | | 5.3 | А | 5.3 | Housing | | 32 | 1 | | 8.0 | | 7.3 | | 7.3 | | 6.0 | | 5.3 | | J.J | | | 40 | 1½" | PN 40 | 9.4 | | 8.3 | | 9.4 | PN 40 | 7.4 | | 6.3 | | 7.4 | | | 50 | 2" | | 10.6 | | 9.3 | | 10.6 | _ | 8.6 | | 7.3 | | 8.6 | | | 65 | _ | | 12 | | 11.1 | | - | | 10.0 | | 9.1 | | - | | | 80 | 3" | | 14 | | 112.5 | | 14.0 | | 12.0 | | 10.5 | | 12.0 | | | 100 | 4" | PN 16 | 16 | 10K | 14.7 | | 16.0 | PN 16 | 14.0 | 10K | 12.7 | | 14.0 | | | 125 | _ | P | 21.5 | | 21.0 | | _ | PI | 19.5 | | 19.0 | | | | | 150 | 6" | | 25.5 | | 24.5 | 150 | 25.5 | - | 23.5 | | 22.5 | 150 | 23.5 | | | 200 | 8" | | 45 | | 41.9 | Class 150 | 45 | | 43 | | 39.9 | Class 150 | 43 | | | 250 | 10" | PN 10 | 65 | | 69.4 | 0 | 75 | PN 10 | 63 | | 67.4 | | 73 | | | 300 | 12" | II. | 70 | | 72.3 | | 110 | II. | 68 | | 70.3 | | 108 | | | 350 | 14" | | 105 | | | | 175 | | 103 | | | | 173 | | | 375 | 15" | | 120 | | | | - | | 118 | | | | _ | | | 400 | 16" | | 120 | | | | 205 | | 118 | | | | 203 | | | 450 | 18" | | 161 | | | | 255 | | 159 | | | | 253 | | | 500 | 20" | | 156 | | | | 285 | - | 154 | | | | 283 | 6.0 | | 600 | 24" | | 208 | | | | 405 | - | 206 | | | | 403 | | | 700 | 28" | | 304 | | | | 400 | | 302 | | | | 398 | | | - | 30" | | _ | | | | 460 | | _ | | | | 458 | | | 800 | 32" | | 357 | | | | 550 | - | 355 | | | | 548 | | | 900 | 36" | | 485 | | | | 800 | | 483 | | | | 798 | | | 1000 | 40" | PN 6 | 589 | | | | 900 | PN 6 | 587 | | | | 898 | | | ı | 42" | | - | | | | 1100 | | - | | | | 1098 | | | 1200 | 48" | | 850 | | | _ | 1400 | | 848 | | | | 1398 | | | - | 54" | | - | | | Class D | 2200 | | - | | | Class D | 2198 | | | 1400 | = | | 1300 | | | 0 | - | | 1298 | | | 0 | - | | | = | 60" | | - | | | | 2700 | | = | | | | 2698 | | | 1600 | - | | 1700 | | | | _ | | 1698 | | | | - | | | П
| 66" | | = | | | | 3700 | | = | | | | 3698 | | | 1800 | 72" | | 2200 | | | | 4100 | | 2198 | | | | 4098 | | | _ | 78" | | _ | | | | 4600 | | _ | | | | 4598 | | | 2000 | = | | 2800 | | | | _ | | 2798 | | | | | | ¹⁾ For flanges to AS, only DN 80, 100, 150 to 400, 500 and 600 are available. Transmitter (compact version): 3.4 kg Weight data valid for standard pressure ratings and without packaging material. Weight in US units (only ANSI / AWWA) | Weight data | in lbs | | | | | | | | | | |-------------|----------|-----------------|------------|-----------|--------------------------------|--------------------|--|--|--|--| | Nominal | diameter | Compact version | | | Remote version (without cable) | | | | | | | | | | | | Sensor | Transmitter | | | | | | [mm] | [inch] | | ANSI /AWWA | | ANSI / AWWA | Wall-mount housing | | | | | | 25 | 1" | | 16.1 | | 11.7 | | | | | | | 40 | 1 1/2" | | 20.7 | | 16.3 | | | | | | | 50 | 2" | | 23.4 | | 19.0 | | | | | | | 80 | 3" | | 30.9 | | 26.5 | | | | | | | 100 | 4" | | 35.3 | | 30.9 | | | | | | | 150 | 6" | | 56.2 | | 51.8 | | | | | | | 200 | 8" | 150 | 99.2 | Class 150 | 94.8 | | | | | | | 250 | 10" | Class 150 | 165.4 | Class | 161.0 | | | | | | | 300 | 12" | | 242.6 | | 238.1 | | | | | | | 350 | 14" | | 385.9 | | 381.5 | | | | | | | 400 | 16" | | 452.0 | - | 447.6 | | | | | | | 450 | 18" | | 562.3 | | 557.9 | | | | | | | 500 | 20" | | 628.4 | | 624.0 | 13.2 | | | | | | 600 | 24" | | 893.0 | | 888.6 | 13.2 | | | | | | 700 | 28" | | 882.0 | | 877.6 | | | | | | | - | 30" | | 1014.3 | | 1009.9 | | | | | | | 800 | 32" | | 1212.8 | | 1208.3 | | | | | | | 900 | 36" | | 1764.0 | | 1759.6 | | | | | | | 1000 | 40" | | 1984.5 | | 1980.1 | | | | | | | - | 42" | Class D | 2425.5 | Class D | 2421.1 | | | | | | | 1200 | 48" | Clas | 3087.0 | Clas | 3082.6 | | | | | | | - | 54" | | 4851.0 | | 4846.6 | | | | | | | - | 60" | | 5953.5 | | 5949.1 | | | | | | | = | 66" | | 8158.5 | | 8154.1 | | | | | | | 1800 | 72" | | 9040.5 | | 9036.1 | | | | | | | | 78" | | 10143.0 | | 10138.6 | | | | | | Transmitter (compact version): 7.5 lbs Weight data valid for standard pressure ratings and without packaging material. # Measuring tube specifications | Diameter | | | Internal diameter | | | | | | | | | |----------|--------|--------------------|-------------------|--------------|---------|---------|------|-------------|--------|--------------|--------| | | | EN (DIN) AS 2129 | | AS 4087 ANSI | | AWWA | JIS | Hard rubber | | Polyurethane | | | [mm] | [inch] | [bar] | | | [lbs] | | | [mm] | [inch] | [mm] | [inch] | | 25 | 1" | PN 40 | - | - | Cl. 150 | - | 20 K | - | - | 24 | 0.94 | | 32 | - | PN 40 | П | =. | = | = | 20 K | - | - | 32 | 1.26 | | 40 | 1 1/2" | PN 40 | = | = | Cl. 150 | = | 20 K | - | - | 38 | 1.50 | | 50 | 2" | PN 40 | Table E | PN 16 | Cl. 150 | = | 10 K | 50 | 1.97 | 50 | 1.97 | | 65 | = | PN 16 | = | - | - | - | 10 K | 66 | 2.60 | 66 | 2.60 | | 80 | 3" | PN 16 | Table E | PN 16 | Cl. 150 | - | 10 K | 79 | 3.11 | 79 | 3.11 | | 100 | 4" | PN 16 | Table E | PN 16 | Cl. 150 | - | 10 K | 102 | 4.02 | 102 | 4.02 | | 125 | - | PN 16 | _ | - | - | _ | 10 K | 127 | 5.00 | 127 | 5.00 | | 150 | 6" | PN 16 | Table E | PN 16 | Cl. 150 | = | 10 K | 156 | 6.14 | 156 | 6.14 | | 200 | 8" | PN 10 | Table E | PN 16 | Cl. 150 | = | 10 K | 204 | 8.03 | 204 | 8.03 | | 250 | 10" | PN 10 | Table E | PN 16 | Cl. 150 | = | 10 K | 258 | 10.2 | 258 | 10.2 | | 300 | 12" | PN 10 | Table E | PN 16 | Cl. 150 | = | 10 K | 309 | 12.2 | 309 | 12.2 | | 350 | 14" | PN 6 | Table E | PN 16 | Cl. 150 | _ | _ | 342 | 13.5 | 342 | 13.5 | | 375 | 15" | - | - | PN 16 | - | _ | - | 392 | 15.4 | _ | _ | | 400 | 16" | PN 6 | Table E | PN 16 | Cl. 150 | _ | - | 392 | 15.4 | 392 | 15.4 | | 450 | 18" | PN 6 | - | - | Cl. 150 | _ | - | 437 | 17.2 | 437 | 17.2 | | 500 | 20" | PN 6 | Table E | PN 16 | Cl. 150 | _ | _ | 492 | 19.4 | 492 | 19.4 | | 600 | 24" | PN 6 | Table E | PN 16 | Cl. 150 | = | =. | 594 | 23.4 | 594 | 23.4 | | 700 | 28" | PN 6 | = | = | = | Class D | = | 692 | 27.2 | 692 | 27.2 | | - | 30" | = | = | = | = | Class D | = | 742 | 29.2 | 742 | 29.2 | | 800 | 32" | PN 6 | = | = | = | Class D | = | 794 | 31.3 | 794 | 31.3 | | 900 | 36" | PN 6 | _ | - | - | Class D | - | 891 | 35.1 | 891 | 35.1 | | 1000 | 40" | PN 6 | = | - | - | Class D | - | 994 | 39.1 | 994 | 39.1 | | - | 42" | - | = | - | - | Class D | - | 1043 | 41.1 | 1043 | 41.1 | | 1200 | 48" | PN 6 | = | - | - | Class D | - | 1197 | 47.1 | 1197 | 47.1 | | - | 54" | | = | = | = | Class D | = | 1339 | 52.7 | = | = | | 1400 | - | PN 6 | - | - | - | - | - | 1402 | 55.2 | - | - | | - | 60" | - | - | = | = | Class D | = | 1492 | 58.7 | - | = | | 1600 | = | PN 6 | - | = | = | = | = | 1600 | 63.0 | = | = | | - | 66" | - | - | = | = | Class D | = | 1638 | 64.5 | - | = | | 1800 | 72" | PN 6 | = | = | = | Class D | = | 1786 | 70.3 | = | = | | 2000 | 78" | PN 6 | 1 | - | - | Class D | - | 1989 | 78.3 | _ | - | #### Material - Transmitter housing - Compact housing: powder-coated die-cast aluminum - Wall-mount housing: powder-coated die-cast aluminum - Sensor housing - DN 25 to 300 (1 to 12"): powder-coated die-cast aluminum - DN 350 to 2000 (14 to 78"): with protective lacquering - Measuring tube - DN ≤ 300 (12"): stainless steel 1.4301 or 1.4306/304L; (for flanges made of carbon steel with Al/Zn protective coating) - DN \ge 350 (14"): stainless steel 1.4301 or 1.4306/304L; (for flanges made of carbon steel with Al/Zn protective coating) - Electrodes: 1.4435, Alloy C-22, Tantalum - Flanges - EN 1092-1 (DIN 2501): 1.4571/316L; RSt37-2 (S235JRG2); C22; FE 410W B (DN \leq 300 (12"): with Al/Zn protective coating; DN \geq 350 (14") with protective lacquering) - ANSI: A105; F316L - $(DN \le 300 (12"))$: with Al/Zn protective coating; $DN \ge 350 (14")$ with protective lacquering) - AWWA: 1.0425 - IIS: RSt37-2 (S235IRG2); HII: 1.0425/316L $(DN \le 300 \ (12"))$: with Al/Zn protective coating; $DN \ge 350 \ (14")$ with protective lacquering) - - DN 150 to 300, 600 (6 to 12", 24"): A105 or RSt37-2 (S235JRG2) - DN 50, 80, 100, 350, 400, 500 (2", 3", 4", 14", 16", 20"): A105 or St44-2 (S275JR) - AS 4087: A105 or St44-2 (S275JR) - Seals: to DIN EN 1514-1 - Ground disks: 1.4435/316L, Alloy C-22, Tantalum #### Material load diagram #### Caution! The following diagrams contain material load diagrams (reference curves) for flange materials with regard to the medium temperature. However, the maximum medium temperatures permitted always depend on the lining material of the sensor and/or the sealing material (\rightarrow 21). #### Flange connection to EN 1092-1 (DIN 2501) Material: RSt37-2 (S235JRG2) / C22 / Fe 410W B ### Flange connection to EN 1092-1 (DIN 2501) Material: 316L / 1.4571 #### Flange connection to ANSI B16.5 Material: A 105 #### Flange connection to ANSI B16.5 Material: F316L ### Flange connection to AWWA C 207, Class D Material: 1.0425 ### Flange connection to JIS B2220 Material: RSt37-2 (S235JRG2) / HII / 1.0425 / 316L #### A0003228 #### Flange connection to AS 2129 Table E or AS 4087 PN 16 Material: A105 / RSt37-2 (S235JRG2) / St44-2 (S275JR) A000559 42 Remote operation # Fitted electrodes Measuring electrodes, reference electrodes and empty pipe detection electrodes: ■ Standard available with 1.4435, Alloy C-22, tantalum ■ Optional: exchangeable measuring electrodes made of 1.4435 (DN 350 to 2000 / 14 to 78") Process connections Flange connection: ■ EN 1092-1 (DIN 2501), DN \leq 300 (12") form A, DN \geq 350 (14") form B (Dimensions to DIN 2501, DN 65 PN 16 and DN 600 (24") PN 16 exclusively to EN 1092-1) ■ ANSI B16.5 ■ AWWA C 207, Class D ■ JIS B2220 ■ AS 2129 Table E ■ AS 4087 PN 16 ■ Electrodes Surface roughness - 1.4435, Alloy C-22, tantal: \leq 0.3 to 0.5 µm (\leq 11.8 to 19.7 µin) (all data refer to parts in contact with medium) Human interface Display elements ■ Liquid crystal display: backlit, two lines (Promag 50) or four lines (Promag 53) with 16 characters per line • Custom configurations for presenting different measured-value and status variables ■ Totalizer - Promag 50: 2 totalizers - Promag 53: 3 totalizers Operating elements Unified operation concept for both types of transmitter: Promag 50: ■ Local operation via three keys (□, □, □, □) Quick Setup menus for straightforward commissioning ■ Local operation via three keys (¬, ±, ₺) ■ Application-specific Quick Setup menus for straightforward commissioning Language groups Language groups available for operation in different countries: Promag 50, Promag 53: ■ Western Europe and America (WEA): English, German, Spanish, Italian, French, Dutch, Portuguese ■ Eastern Europe and Scandinavia (EES): English, Russian, Polish, Norwegian, Finnish, Swedish, Czech ■ South and east Asia (SEA): English, Japanese, Indonesian Promag 53: ■ China (CN): English, Chinese You can change the language group via the operating program "FieldCare". Endress+Hauser 43 ■ Promag 50: Remote control via HART, PROFIBUS DP/PA ■ Promag 53: Remote control via HART, PROFIBUS DP/PA, MODBUS RS485, FOUNDATION Fieldbus | | Cordinates and approvals | |------------------------------------|--| | CE mark | The measuring system is in conformity with the statutory requirements of the EC Directives. Endress+Hauser confirms successful testing of the device by affixing to it the CE mark. | | C-tick mark | The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)". | | Pressure measuring device approval | Measuring devices with a nominal diameter smaller than or equal to DN 25 correspond to Article 3(3) of
the EC Directive 97/23/EC (Pressure Equipment Directive) and have been designed and manufactured according to good engineering practice. Where necessary (depending on the medium and process pressure), there are additional optional approvals to Category II/III for larger nominal diameters. | | Ex approval | Information about currently available Ex versions (ATEX, IECEx, FM, CSA, NEPSI) can be supplied by your Endress+Hauser Sales Center on request. All explosion protection data are given in a separate documentation which is available upon request. | | Other standards and guidelines | ■ EN 60529
Degrees of protection by housing (IP code) | | | ■ EN 61010
Protection Measures for Electrical Equipment for Measurement, Control, Regulation and Laboratory
Procedures. | | | ■ IEC/EN 61326 "Emission in accordance with requirements for Class A". Electromagnetic compatibility (EMC requirements) | | | ■ NAMUR NE 21: Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment. | | | ■ NAMUR NE 43: Standardization of the signal level for the breakdown information of digital transmitters with analog output signal. | | | NAMUR NE 53:
Software of field devices and signal-processing devices with digital electronics. | | | ■ ANSI/ISA-S82.01
Safety Standard for Electrical and Electronic Test, Measuring, Controlling and related Equipment - General
Requirements Pollution degree 2, Installation Category II. | | | ■ CAN/CSA-C22.2 No. 1010.1-92
Safety requirements for Electrical Equipment for Measurement and Control and Laboratory Use.
Pollution degree 2, Installation Category II | | FOUNDATION Fieldbus certification | The flow device has successfully passed all the test procedures carried out and is certified and registered by the Fieldbus Foundation. The device thus meets all the requirements of the following specifications: | | | Certified to FOUNDATION Fieldbus Specification The device meets all the specifications of the FOUNDATION Fieldbus H1. Interoperability Test Kit (ITK), revision status 5.01 (device certification number: on request) The device can also be operated with certified devices of other manufacturers Physical Layer Conformance Test of the Fieldbus Foundation | | MODBUS RS485 certification | The measuring device meets all the requirements of the MODBUS/TCP conformity test and has the "MODBUS/TCP Conformance Test Policy, Version 2.0". The measuring device has successfully passed all the test procedures carried out and is certified by the "MODBUS/TCP Conformance Test Laboratory" of the University of Michigan. | | PROFIBUS DP/PA certification | The flow device has successfully passed all the test procedures carried out and is certified and registered by the PNO (PROFIBUS User Organisation). The device thus meets all the requirements of the following specifications: | | | Certified to PROFIBUS PA, profile version 3.0 (device certification number: on request) The device can also be operated with certified devices of other manufacturers (interoperability) | # **Accessories** Various accessories, which can be ordered separately from Endress+Hauser, are available for the transmitter and the sensor. Your Endress+Hauser service organization can provide detailed information on the order codes in question. # **Documentation** - Flow Measurement (FA005D/06) - Operating Instructions Promag Promag 50 (BA046D/06 and BA049D/06) - Operating Instructions Promag Promag 50 PROFIBUS PA (BA055D/06 and BA056D/06) - Operating Instructions Promag Promag 53 (BA047D/06 and BA048D/06) - Operating Instructions Promag Promag 53 FOUNDATION Fieldbus (BA051D/06 and BA052D/06) - Operating Instructions Promag Promag 53 MODBUS RS485 (BA117D/06 and BA118D/06) - Operating Instructions Promag Promag 53 PROFIBUS DP/PA (BA053D/06 and BA054D/06) - Supplementary documentation on Ex-ratings: ATEX, IECEx, FM, CSA, NEPSI # Registered trademarks HART® Registered trademark of the HART Communication Foundation, Austin, USA PROFIBIIS® Registered trademark of the PROFIBUS Nutzerorganisation e.V., Karlsruhe, D FOUNDATIONTM Fieldbus Registered trademark of the Fieldbus Foundation, Austin, USA MODBUS® Registered trademark of the MODBUS Organisation $\label{eq:historom} HistorOM^{\tiny{TM}}, S-DAT^{\tiny{\$}}, T-DAT^{\tiny{TM}}, F-CHIP^{\tiny{\$}}, FieldCare^{\tiny{\$}}, FieldCheck^{\tiny{\$}}, FieldXpert^{\tiny{TM}}, Applicator^{\tiny{\$}}\\ Registered or registration-pending trademarks of Endress+Hauser Flowtec AG, Reinach, CH$ # **Order Codes** NOTE: Endress+Hauser reserves the right to change or modify product, specifications, and ordering information at any time without notice. Please consult Endress+Hauser or your local representative for the most recent information. Please note that the Promag 50W/53W is also available with: Hard rubber and Polyurethane liners; ACS, KTW/W270 and WRAS B59620 approvals PED Cat. II / III material certificates ATEX and NEPSI hazardous area approvals DIN2501 and JIS B2220 process connections Consult factory for information. ### Promag 50W, 1" to 24" | 010 020 030 040 050 060 070 080 090 100 110 120 | | |---|-------------------------| | 350W | | | | | | | | | Nameter | | | iameter 1" 070 Housing | | | 1-1/2" A NEMA 4X (IP 67) compact aluminum housing | | | 2" C NEMA 4X (IP 67) remote wall-mounted (only for appr | | | 3" G NEMA 4X (IP 67) remote aluminum field housing for | | | 4" K NEMA 6P sensor, wall-mounted housing (only for app 6" N NEMA 6P sensor, aluminum field housing, non-hazar | | | 8" P NEMA 4X (IP 67) compact aluminum housing, HE (h | | | 10" compact and remote sensor sizes up to 12" only * | | | 12" S NEMA 4X (IP 67) remote wall-mounted housing, HE | | | 14" remote sensor sizes 14" to 78" (only for approvals A a 16" 40°F (-40°C) ambient temperature, NEMA 4X (IP 67 | | | 18" aluminum field housing (only for approvals A and R) | ,, compact, | | 20" 3 -40°F (-40°C) ambient temperature, NEMA 4X (IP 67 |), compact | | 24" (only for approvals A and R) | Z) | | er 5 -40°F (-40°C) ambient temperature, NEMA 4X (IP 67 Hard rubber, NSF61 drinking water approval (not available for 1", 1-1/2" or 2" sensors) mount housing, for NEMA 6P sensor (only for approv | | | Hard rubber, find available for 1, 1-1/2" or 2" sensors) 9 Special version, to be specified | als A and Ny | | Polyurethane, NSF61 drinking water approval 080 Cable for remote | | | Hard rubber HR (not available for 1", 1-1/2" or 2" sensors) 0 Without cable | | | Polyurethane 1 15 foot coil and signal cable Special version, to be specified 2 30 foot coil and signal cable | | | special version, to be specified 2 50 foot on and signal cable
specify length (maximum 650 f | t depending on | | Class 150 ANSI B16.5 CS steel A105 flanges conductivity of process material) | , , | | Class 300 ANSI B16.5 CS steel A105 flanges (not for 8" and larger) 7 Coil and signal cable, flexible conduit, specify length | (maximum 650 ft | | Class 150 ANSI B16.5 316L SS flanges depending on conductivity of process material) Class 300 ANSI B16.5 316L SS flanges (not for 8" and larger) 9 Special version, to be specified | | | Class 300 ANSI B16.5 316L SS flanges (not for 8" and larger) Special version, to be specified Special version, to be specified O90 Cable entries | | | ctrodes / material B 1/2" NPT | | | Measuring, reference and EPD electrodes / 316L SS L 1/2" NPT fieldbus connector (only for approval A and | R) | | Measuring, reference and EPD electrodes / Alloy C22 Measuring, reference and EPD electrodes / tantalum 9 Special version, to be specified Power supply / display | | | Measuring, reference and EPD electrodes / tantalum Measuring electrode, exchangeable / 316L SS (for hard rubber liner 100 Power supply / display 7 85 to 260 VAC, without display, remote configuration | only (not for | | only, 14" and larger sensors, no EPD or reference electrodes, for safe areas only) wall mount or SS housing) | • • | | Measuring, reference and EPD electrodes, bullet nose / 316L SS 8 20 to 55 VAC / 16 to 62 VDC, without display, remote | configuration | | Measuring, reference and EPD electrodes, bullet nose / Alloy C-22 only (not for wall mount or SS housing) Special version, to be specified A 85 to 260 VAC, with display, push button operation (I | anguage: EN ES ED | | poteial version, to be specialed T. NL, PT. DE) If NL, PT. DE) | anguage. Liv, Lo, i ix, | | 3-point calibration, 0.5% B 20 to 55 VAC / 16 to 62 VDC, with display, push butter | on operation | | 3-point calibration, 0.2% (language: EN, ES, FR, IT, NL, PT, DE) | | | SCS/A2LA 3-point 0.5% calibration (ISO/IEC 17025) with certificate X Sensor only (without transmitter, only available up to traceable according to ISO 9000 (specify range) 9 Special version, to be specified | 8") | | traceable according to ISO 9000 (specify range) SCS/A2LA 3-point 0.2% calibration (ISO/IEC 17025) with certificate 9 Special version, to be specified 110 Software | | | traceable according to ISO 9000 (specify range) A Standard software | | | Special version, to be specified X Sensor only (up to 8" only) | | | rificates 9 Special version, to be specified | | | Standard, no certificate 120 Outputs / Inputs 3.1B material certificate for pipe and flanges A Current HART, SIL, frequency | | | 2.3 pressure test certificate (1.5 x PN, 3 minutes) for sensors up to 12" only D Current HART, SIL, frequency, status output, status i | nput | | 3.1B material and 2.3 pressure test certificate for sensors up to 12" only H PROFIBUS-PA (approvals A and R only) | • | | CRN approval J PROFIBUS-DP (approvals A and R only) CRN approval
+ material certificate + pressure test S Current HART, SIL, frequency: active I.S. (not for apr | arayala A and D\ | | CRN approval + material certificate + pressure test S Current HART, SIL, frequency; active I.S. (not for approval version, to be specified T Current HART, SIL, frequency; passive I.S. (not for approval version, to be specified T Current HART, SIL, frequency; passive I.S. (not for approval version). | | | provals W Current HART, SIL | rr. 310.07. 0110 11) | | For use in non-hazardous areas X Sensor only | | | FM explosion proof Class I, Div. 1 / CSA Class I, Div. 1 9 Special version, to be specified | | | (only for aluminum field housing, compact version, not for 14" and larger sensors) FM non-incendive Class I, Div. 2 / CSA Class I, Div. 2 * Harsh environment (HE) option is available for process cond | litions where | | cool process temperatures in tropical (high humidity) enviror | | | fluids which undergo large cyclical temperature variations w | hich can cause | Endress+Hauser 47 high amounts of moisture that could condense onto the measurement tube. ### Promag 50W, 28" to 78" | Nominal Diameter 7H 28" 28" 30", AWWA | | |--|--| | S Hard Tubber HR U Polyurethane (not available for 42" up to 78") 9 Special version, to be specified Ozole for remote 0 Without cable 1 15 foot coil and signal cable 2 30 foot coil and signal cable 2 30 foot coil and signal cable 3 Special version, to be specified Ozole Flectvodes / material 0 Measuring, reference and EPD electrodes / 316L SS 1 Measuring, reference and EPD electrodes / Alloy C22 2 Measuring, reference and EPD electrodes / Alloy C22 3 Measuring, reference and EPD electrodes / Indicated (maximum of 50 ft depending on conductivity of process material) 7 Measuring reference and EPD electrodes / Indicated (maximum of 50 ft depending on conductivity of process material) 7 Measuring reference and EPD electrodes / Indicated (maximum of 50 ft depending on conductivity of process material) 8 Special version, to be specified Ozole entries 1 Indicated (maximum of 50 ft depending on conductivity of process material) 9 Special version, to be specified Ozole entries 1 Indicated (maximum of 50 ft depending on conductivity of process material) 1 Measuring reference and EPD electrodes / Indicated (maximum of 50 ft depending on conductivity of process material) 1 Measuring reference and EPD electrodes / Indicated (maximum of 50 ft depending on conductivity of process material) 1 Measuring reference and EPD electrodes, bullet nose / 316L SS 1 Measuring reference and EPD electrodes, bullet nose / 316L SS 1 Net Tieldbus connector (only for approval A and R) 1 Networking, reference and EPD electrodes, bullet nose / Alloy C-22 1 Networking reference and EPD electrodes, bullet nose / 316L SS 2 Special version, to be specified 3 Special version, to be specified 4 Networking reference and EPD electrodes, bullet nose / 316L SS 3 Special version, to be specified 4 Networking reference and EPD electrodes, bullet nose / 316L SS | and R) , wall | | for safe areas only) G Measuring, reference and EPD electrodes, bullet nose / 316L SS H Measuring, reference and EPD electrodes, bullet nose / Alloy C-22 L 1/2" NPT fieldbus connector (only for approval A and R) 9 Special version, to be specified Power supply / display | | | O40 Calibration (not for wall mount or SS housing) A 3-point calibration, 0.5% 8 20 to 55 VAC / 16 to 62 VDC, without display, remote | only | | D SCS/A2LA 3-point 0.5% calibration (ISO/IEC 17025) with certificate traceable according to ISO 9000 (specify range) E SCS/A2LA 3-point 0.2% calibration (ISO/IEC 17025) with certificate traceable according to ISO 9000 (specify range) B 20 to 55 VAC / 16 to 62 VDC, with display, push button (language: EN, ES, FR, IT, NL, PT, DE) Special version, to be specified X Sensor only (without transmitter, only available up to 8") | on operation | | 1 Standard, no certificate 110 Software 2 3.1B material certificate for pipe and flanges A Standard software 9 Special version, to be specified 9 Special version, to be specified | | | Approvals A For use in non-hazardous areas B FM non-incendive Class I, Div. 2 / CSA Class I, Div. 2 B FM non-incendive Class I, Div. 2 / CSA Class I, Div. 2 B FM non-incendive Class I, Div. 2 / CSA Class I, Div. 2 B Current HART, SIL, frequency, status output, status input H PROFIBUS-PA (approvals A and R only) J PROFIBUS-DP (approvals A and R only) S Current HART, SIL, frequency; active I.S. (not for approvals A and R only) W Current HART, SIL, frequency; passive I.S. (not for approvals A and R only) W Current HART, SIL, frequency; passive I.S. (not for approvals A and R only) W Current HART, SIL, frequency; passive I.S. (not for approvals A and R only) W Current HART, SIL, frequency; passive I.S. (not for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approval for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and R only) W Current HART, SIL, frequency in the proposal for approvals A and | ovals A and R)
rovals A and R)
s where | * Harsh environment (HE) option is available for process conditions where cool process temperatures in tropical (high humidity) environments or process fluids which undergo large cyclical temperature variations which can cause high amounts of moisture that could condense onto the measurement tube. # Promag 53W, 1" to 24" | Pror | nag 5 | 010 020 030 040 050 060 070 080 09
3W | 0 100 | 11 | 0 120 | |------|--|---|-------|-----
---| | Nom: | nal Dia 25 40 40 80 11H 1F 2H 2F 3H 4F 5H 4F 5H Liner D H P S U 9 Procee L M R S 9 9 | ameter 1" 1-1/2" 2" 3" 4" 6" 8" 10" 12" 14" 16" 18" 20" 24" Hard rubber, NFS61 drinking water approval (not available for 1", 1-1/2" or 2" sensors) Hard rubber (not available for 1", 1-1/2" or 2" sensors) Polyurethane, NSF61 drinking water approval Hard rubber HR (not available for 1", 1-1/2" or 2" sensors) Polyurethane, NSF61 drinking water approval Hard rubber HR (not available for 1", 1-1/2" or 2" sensors) Polyurethane Special version, to be specified ss connection Class 150 ANSI B16.5 CS steel A105 flanges Class 300 ANSI B16.5 CS steel A105 flanges (not for 8" and larger) Class 150 ANSI B16.5 316L SS flanges Class 300 ANSI B16.5 S 316L SS flanges (lass 300 ANSI B16.5 CS steel A105 flanges (not for 8" and larger) Special version, to be specified odes / material Measuring, reference and EPD electrodes / 316L SS Measuring, reference and EPD electrodes / Alloy C22 Measuring, reference and EPD electrodes / India was reference and EPD or reference electrodes, for safe areas only) Measuring, reference and EPD electrodes, bullet nose / 316L SS Measuring, reference and EPD electrodes, bullet nose / Alloy C-22 Special version, to be specified | | 080 | Cable for remote 0 Without cable 1 15 foot coil and signal cable 2 30 foot coil and signal cable 5 Coil and signal cable, specify length (maximum 650 ft depending on conductivity of process material) 7 Coil and signal cable, flexible conduit, specify length (maximum 650 ft depending on conductivity of process material) 9 Special version, to be specified | | | 9
Certif
1
2
3
4
5
8
9
Appro | SCS/A2LA 3-point, 0.2% calibration (ISO/IEC 17025) with certificate traceable according to ISO 9000 (specify range) Special version, to be specified icates Standard, no certificate 3.1B material certificate for pipe and flanges 2.3 pressure test certificate (1.5 x PN, 3 minutes) for sensors up to 12" only 3.1B material and 2.3 pressure test certificate for sensors up to 12" only CRN approval CRN approval + material certificate + pressure test Special version, to be specified | | | T Current HART, SIL, frequency; passive I.S Flexible communication boards C Current HART, SIL, frequency, 2 relays, flexible module D Current HART, SIL, 1 frequency, relay, and status input, flexible modul L Current HART, SIL, 2 relays and status input/output M Current HART, SIL, 2 frequency output, status input N Modbus RS 485, current and frequency output, status input P PROFIBUS-DP, current and frequency output, status input V PROFIBUS-DP, two relay outputs, status input Current HART, SIL, relay, current, frequency output Current HART, SIL, relay, frequency outputs, current input Modbus RS485, two relay outputs, status input Sensor only | | 070 | R Housi A C G G K N P S 1 3 5 9 | FM explosion proof Class I, Div. 1 / CSA Class I, Div. 1 (only for aluminum field housing, compact version, not for 14" and larger sensors) FM non-incendive Class I, Div. 2 / CSA Class I, Div. 2 | | * | Harsh environment (HE) option is available for process conditions where cool process temperatures in tropical (high humidity) environments or process fluids which undergo large cyclical temperature variations which can cause high amounts of moisture that could condense onto the measurement tube. | ### Promag 53W, 28" to 78" | Prom | 010 020 030 040 050 060 070 080 090
mag 53W | 100 11 | 0 120 | | |-------|--|--------|----------|---| | Nomir | nal Diameter | | | | | | 7H 28" | 080 | Cable fo | or remote | | | 7F 30", AWWA | | 0 V | Vithout cable | | | 8H 32" | | | 5 foot coil and signal cable | | | 9H 36" | | | 0 foot coil and signal cable | | | TO 40" | | | Coil and signal cable, specify length (maximum 650 ft depending on onductivity of process material) | | | VO 42", AWWA
T2 48" | | | Coil and signal cable, flexible conduit, specify length (maximum 650 | | | V3 54", AWWA | | | lepending on conductivity of process material) | | | V5 60", AWWA | | | pecial version, to be specified | | | V6 66", AWWA | 090 | Cable e | ntries | | | T8 72" | | | /2" NPT | | | V9 78", AWWA | | | /2" NPT Fieldbus connector (only for approval A and R) | | 010 | | 100 | | pecial version, to be specified | | | D Hard rubber, NSF61 drinking water approval H Hard rubber | 100 | | supply / display
15 to 260 VAC, without display, remote configuration only (not for | | | P Polyurethane, NSF61 drinking water approval (not available for | | | vall mount or SS housing) | | | 42" to 78" sensors) | | | 20 to 55 VAC / 16 to 62 VDC, without display, remote configuration | | | S Hard rubber HR | | | only (not for wall mount or SS housing) | | | U Polyurethane (not available for 42" to 78" sensors) | | | 55 to 260 VAC, with display, push button operation (language: EN, | | | 9 Special version, to be specified | | | S, FR, IT, NL, PT, DE) | | | Process connection | | | 20 to 55 VAC / 16 to 62 VDC, with display, push button operation | | | P Class D AWWA carbon steel A105 flanges 9 Special version, to be specified | | | language: EN, ES, FR, IT, NL, PT, DE) special version, to be specified | | 030 | Electrodes / material | 110 | Softwar | | | | 0 Measuring, reference and EPD electrodes / 316L SS | 110 | | tandard software | | | 1 Measuring, reference and EPD electrodes / Alloy C22 | | C E | ECC electrode cleaning circuit (only for approvals A and R) | | | 2 Measuring, reference and EPD electrodes / tantalum | | | pecial version, to be specified | | | 7 Measuring electrode, exchangeable / 316L SS (for hard rubber liner only, | 120 | | s / Inputs | | | 14" and larger sensors, no EPD or reference electrodes, for safe areas only) G Measuring, reference and EPD electrodes, bullet nose / 316L SS | | | ommunication boards
Current HART, SIL, frequency | | | G Measuring, reference and EPD electrodes, bullet nose / 316L SS H Measuring, reference and EPD electrodes, bullet nose / Alloy C-22 | | | Current HART, SIL, frequency, 2 relays | | | 9 Special version, to be specified | | | PROFIBUS-PA, IS | | 040 | Calibration | | G F | Foundation Fieldbus, IS | | | B 3-point calibration, 0.2% | | | PROFIBUS-PA | | | E SCS/A2LA 3-point 0.2% calibration (ISO/IEC 17025) with certificate | | | PROFIBUS-DP | | | traceable according to ISO 9000 (specify range) Special version, to be specified | | | Foundation Fieldbus
Modbus RS485, status input | | | 9 Special version, to be specified Certificates | | | Current HART, SIL, frequency; active I.S | | | 1 Standard, no certificate | | | Current HART, SIL, frequency; passive I.S | | | 2 3.1B material certificate for pipe and flanges | | | communication boards | | | 9 Special version, to be specified | | | Current HART, SIL, frequency, 2 relays, flexible module | | | Approvals | | | Current HART, SIL, frequency, relay, and status input, flexible modul | | | A For use in non-hazardous areas | | | Current HART, SIL, 2 relays and status input/output Current HART, SIL, 2 frequency output, status input | | | R FM non-incendive Class I, Div. 2 / CSA Class I, Div. 2 | | | Modbus RS 485, current and frequency output, status input | | | Housing A NEMA 4X (IP 67) compact aluminum housing | | | PROFIBUS-DP, current and frequency output, status input | | | C NEMA 4X (IP 67) compact auditinitian nousing NEMA 4X (IP 67) remote wall-mounted (only for approvals A or R) | | V P | ROFIBUS-DP, two relay outputs, status input | | | G NEMA 4X (IP 67) remote aluminum field housing for non-hazardous areas | | | Current HART, SIL, relay, current, frequency outputs | | | K NEMA 6P sensor, wall-mounted housing (only for approvals A or R) | | | Current HART, SIL, relay, frequency outputs, current input | | | S NEMA 4X (IP 67) remote wall-mounted housing, HE (harsh environment), | | | Modbus RS485, two relay outputs, status input
lensor only | | | remote sensor sizes 14" to 78" (only for approvals A and R) * | | | pecial version, to be specified | | | 1 -40°F (-40°C) ambient temperature, NEMA 4X (IP 67), compact,
aluminum field housing (only for approvals A and R) | | _ | , | | | 3 -40°F (-40°C) ambient temperature, NEMA 4X (IP 67), compact | | | | | | (only for approvals A and R) | | | | | | 5 -40°F (-40°C) ambient temperature, NEMA 4X (IP 67) wall | | | | | | mount housing, for NEMA 6P sensor (only for approvals A and R) Special version, to be specified | | | | | | 9 Special version, to be specified | | | | * Harsh environment (HE) option is available for process conditions where cool process temperatures in tropical (high humidity) environments or process fluids which undergo large cyclical temperature variations which can cause high amounts of moisture that could condense onto the measurement tube. #### **United States** Canada Mexico Instruments International Endress+Hauser, Inc. 2350 Endress Place Greenwood, IN 46143 Endress+Hauser, México, S.A. de C.V. Fernando Montes de Oca 21 Edificio A Piso 3 Fracc. Industrial San Nicolás Endress+Hauser Canada Endress+Hauser 1075 Sutton Drive Burlington, ON L7L 528 Tel. 905-681-9292 800-668-3199 Fax 905-681-9444
Instruments International AG Kaegenstrasse 2 4153 Reinach Tel. 317-535-7138 54030. Tlalnepantla de Baz Sales 888-ENDRESS (888-363-7377) Service 800-642-8737 fax 317-535-8498 inquiry@us.endress.com www.us.endress.com info@ca.endress.com www.ca.endress.com TI046D/24/en/07.10 © 2010 Endress+Hauser, Inc. Estado de México México Tel: +52 55 5321 2080 Fax +52 55 5321 2099 eh.mexico@mx.endress.com www.mx.endress.com Switzerland Tel. +41 61 715 81 00 Fax +41 61 715 25 00 www.endress.com info@ii.endress.com