

Solenoid Valves for gas

Solenoid Valves for gas or air VG . .

- // Operating pressures
- 2 psig (130 mbar) 5 psig (360 mbar)
- // Designed for continous on-off cycling
- Designed for maintenance free operation
- // Fast or slow opening
- Gas flow adjustable from 10 % to 100 % of its rated capacity
- Due to d.c. coil-system overheating of the coil is not possible
- Kromschröder is a company certified to ISO 9001

Application

- FM approved as a shut-off valve to control or modulate the fluid flow rate.
- UL listed as shut-off valve actuated by a safety control or an emergency device to prevent the unsafe delivery or a fluid. It may be used also as a general purpose valve.
- CSA certified as an electromagnetically operated valve.
- CGA approved as an automatic fail-safe shut-off valve.

Technical Description

Valve with spring-loaded valve disk, normally closed. Valve housing: Die cast aluminium Female thread: NPT Flange: ASA

O-rings: Buna N (NBR) Valve disk seal: Buna N (NBR)

Type of gas: natural gas, LPG and air

Max. operating pressure: See specification table

Flow rate: Refer to flow diagram or specifi-

cation table Opening time:

VG..N: fast opening approx. < 0.5 s VG..L: slow opening adjustable from 0.5 s

to approx. 10 s

Closing time VG..N, VG..L: < 1 s

Switching frequency:

VG..N: 60 per minute

Fig. 2

VG..L: 6 per minute with full reproducibility

of the damping unit Operating Cycles: 2.000.000

Voltage for power supply:

120 V AC +10/-15 %, 50/60 Hz.

Solenoids are operated with D.C. coils, with a full wave rectifier circuit located in valve terminal box.

There are two grounding screws in the terminal box.

Power factor of solenoid coil: cos. $\phi = 1$

The electrical rating as per specification table is the same during start-up or continuous operation. Duty cycle: continuous Conduit connection: 1/2" NPT Terminal: Maximum 14 gauge wire size Typ of enclosure: NEMA 3

Flow rate is adjustable from 10 to 100% of the rate rated capacity by rotating a socket head screw located on the bottom of the valve body.

Ambient temperature: max. -4° F (-20° C) to 104° F (40° C) CSA approved up to 140° F (60° C).

Model VG 15 - 40/32 (Fig. 1)

Pressure taps 1/4" NPT are located on both sides at outlet end of valve Built-in brass strainer.

Limiting orifice material: polyacetate

Model VG 40 - 100 (Fig. 2)

Pressure taps 1/4" NPT are located on both sides at inlet and outlet. Built-in stainless steel strainer.

Limiting orifice material: galvanized steel

Valve options

- VG..N fast opening
- VG..L with damping unit, slow opening VG..D with limiting orifice
- VG...S with closed position indicator
- VG 40-100 for visual indicator assembly

Setting of initial gas flow with VG . . L

Adjustable from 0 - 70 % of the flow rate (at = Δp = 0.4 inch WC [1 mbar]).

The initial gas flow rate is not set at the factory. The damping unit is fully adjustable as shown in Fig. 3.

Closed position indicator only for VG . . S (Fig. 4).

These types are equipped with a two pole micro-switch to indicate closed position. The switch has been factory adjusted and tested.

Wiring for switch by GDM connector-conduit connection: 1/2" NPT or cable gland for multi-conductor cable.

Connected loads: 60 to 250 V, 50/60 Hz. Max. load: 2 A

Visual indicator VG . . I (Fig. 5)

For assembly with VG 40-100 fast and slow opening by 1/2" thread in bottom of the valve.

Not in connection with limiting orifice and closed position indicator.

Installation (Fig. 6)

Watch flow direction. The valves are designed for flow in one direction only. Coil must be in horizontal or vertical position. Do not locate coil below horizontal position. When installing the valves, don't use coil housing as levers. Use suitable wrenches.

For other than standard 120 V AC, 50/60 Hz systems consult Kromschröder Inc. for details

To correct for any conditions:

Flows in the table are at 60° F, seal level (14.7 PSIA), with a supply pressure to the orifice of 1 PSIA. To correct for other conditions, use the following formula:

Corrected Flow =

S.G.	15.7
2	s.G.

Where

°F	=	Gas temp. through orifice
S.G.	=	Specific gravity of gas
PSIA	=	Barometric pressure
PSIG	=	Supply pressure to orifice

Correction Factors

To correct for specific gravity ONLY:

low from the t	able by:
1.00 s.g.	.774
1.56 s.g.	.620
2.00 s.g.	.547
	1.00 s.g. 1.56 s.g.

Use these figures to estimate barometric pressure at various altitudes:

Sea Level	14.7 PSIA
1000′	14.2 PSIA
2000′	13.7 PSIA
3000′	13.2 PSIA
4000′	12.7 PSIA
5000'	12.2 PSIA
6000′	11.8 PSIA
7000′	11.3 PSIA

Type code

Туре	VG 4	0	V 0	1	L	D	S	9	3
Size = 15, 20, 25, 40/32, 40, 50, 65, 80, 100									
Connection: NPT-thread = N, flange = A									
max. inlet pressure 0,1/0,2 = 2 psig (130 mbar) 0,3 = 5 psig (360 mbar)									
with damping unit = L, without damping unit = N									
with maximum flow-limiting orifice = D^*									
with closed position indicator = S^*									
Terminal box metal = 9									
pressure taps at the outlet = 2, pressure taps at inlet a	nd outl	et =	3						

*If not applicable this letter is omitted, i. e. the next letter moves one up. We reserve the right to make technical changes designed to improve our products without prior notice.

3

Туре	Conne											(ASA)	e ANS B 16,! c/s.g.ir	5	Bore S. D			max. inlei pressure			Р	Weight									
	NPT		L		E	l	Ø		H1		H2		HB		H4		H5		D.	2	Ĩ	k		12	t hol			$\Delta p =$	120 VAC		l. I.e.
VG 15N02		DN 15	IN 2 ^{13/16}	mm 71	11N 2 ¹⁷ / ₃₂	mm 64	IN	mm	IN 6 ^{11/32}	mm 161		mm 112	IN 15/16	mm 24	IN 21/2	mm 62	IN	mm	IN	mm	IN	mm	IN	mm	20	psig	mpar 130	1 in W.C. 213	VA/W 31 (31)	LBS 3.1 (35)	kg 1.4 (1.6)
VG 15N02	1/2	15	2 ¹³ /16	71		64			6 ¹¹ / ₃₂	161		112		24	2 1/2 2 ¹ /2	62										5	360	213	31 (31)		1.4 (1.6)
VG 10N03 VG 20N02	3/4	20	2 /10 3 ¹⁹ /32	91	2 ^{23/32}	69			6 ²⁷ / ₃₂	174		126	15/16	33	2 /2 2 ³ /4	70										2	130	450	31 (31)	4.5 (4.9)	. ,
VG 20N02	3/4	20	3 ¹⁹ / ₃₂	91	2 ²³ /32				6 ²⁷ / ₃₂	175				33	2 ^{3/4}	70										5	360	450	31 (36)	5.3 (5.8)	. ,
VG 25N02	1	25	3 ¹⁹ / ₃₂	91	2 ²³ /32	69			6 ²⁷ / ₃₂	175		120	1 ⁵ /16	33	2 /4	70										2	130	563	31 (31)	4.4 (4.8)	
VG 25N02	1	25	3 ¹⁹ / ₃₂	91						175		126		33	2 /4 2 ³ /4	70										5	360	563	36 (36)	5.2 (5.7)	· · · /
VG 201000 VG 40/32N02	1 ¹ / ₂	40	5 ¹ /16	128	2 ³⁰ /32	74			75/8	194		145	1%/16	39	3	76										2	130	1013	36 (36)	6.5 (6.9)	
VG 40/02/102	11/2	40		150	2 / 32	7 4	51/16	129		280		205	2	51	33/8	86	35/16	84								2	130	1350	64 (64)	13.0 (14.1)	
VG 40N03	1 1/2	40	5 ²⁴ / ₃₂	150			5 ¹ /16	129	11	280	8 ¹ /16	205	2	51	3 ³ /8	86	35/16	84								5	360	1350	74 (74)	15.9 (17.0)	. ,
VG 50N01	2	50	7 ³ / ₃₂	180			6 ⁵ /32		1115/32			216		62	37/8	98	3 ⁴⁷ /64	95								2	130	2083	74 (74)	17.0 (18.1)	, ,
VG 50N01	2	50	7 ³ /32	180			6 ⁵ /32		1115/32			216	27/16	62	37/8	98	3 ⁴⁷ /64	95								5	360	2003	80 (80)	27.3 (28.4)	. ,
VG 65N01	21/2	65	819/32				7 ⁷ /32		1115/16		-			74	4 ⁵ /16	110	47/32	107								2	130	3208	80 (80)	30.6 (31.7)	. ,
VG 65N03	21/2	65		218			7 ⁷ /32		1515/32					74	45/16	110	47/32	107								5	360	3208	. ,	43.2 (44.3)	. ,
VG 80A01	80	80	12 ³ /16						1515/16					103	57/16		5 ^{23/64}	136	71/2	191	6	152.4	3/4	19	4	2	130	5066	. ,	55.1 (56.2)	. ,
VG 80A01	80	80	12 ^{3/16}				8 ⁷ /32		15 ²⁹ / ₃₂					103	5 ⁷ /16	138	5 ²³ /64	136		191	6	152.4	3/4	19	4	5	360	5066	160 (160)	79.4 (80.5)	
VG 100A01			1325/32				8%/32	210	-	-	1324/32			110	5 ^{45/64}	145	5 5/8	143	9	229	71/2	190.5	3/4	19	8	2	130	7992	160 (100)	90.4 (-)	41.0 (-)

() = Version with L damping unit Version with closed position indicator + 0.4 LBS = 0.2 kg

 $\frac{Power intput (VA)}{Voltage (V)} =$ Power consumption: I =

 $\frac{Power \; intput \; (W)}{Voltage \; (V) \cdot \cos \phi} \; (\cos \phi = 1)$